FTIR investigation of O···H···O hydrogen bonds with large proton polarizability in sulfonic acid–N-oxide systems in the middle and far-IR

(Note: The full text of this document is currently only available in the PDF Version )

Roland Langner and Georg Zundel


Abstract

Sixteen 1:1 methanesulfonic acid–N-oxide systems were studied as a function of the basicity of the N-oxides. The observed IR continua demonstrate that a single minimum proton potential is shifted, with increasing basicity, from the acid to the N-oxide. The largest proton polarizability is attained with the system that shows the (on average) most symmetrical proton potential, as indicated by the maximum bathochromic shift of the IR continuum. This shift toward lower wavenumbers is largest with the methanesulfonic acid–3,5-dichloropyridine-N-oxide complex, for which the integrated absorbance of the IR continuum is also largest and the continuous absorption is nearly temperature independent. The significant intensity distribution at the symmetry point indicates very strong and short O···H···O hydrogen bonds. The proton transfer was studied via the SO-stretching vibration bands. The steady shift of the acid to the acid anion SO bands reflects a continuous proton transfer process within this family of systems. Study of the far-IR region shows that, especially in the most symmetrical cases, the IR continua extend down to 100 cm-1 or less. Semi-empirical calculations show that the observed hydrogen-bond vibrations differ largely from hydrogen-bond stretching vibrations (νσ) and have complicated vibrational character (νHB). In contrast to the methanesulfonic acid–sulfoxide (phosphine oxide, arsine oxide) family of systems no broadening of this transition occurs. The position of the bands indicates, however, a significant trend of the force constant. It is shown that the system with the strongest hydrogen bonds is that with the largest bathochromic shift of the IR continuum, i.e. the system with the largest proton polarizability.


References

  1. A. Rabold, N. Brzezinski, R. Langner and G. Zundel, Acta Chim. Slov., 1997, 44, 237 Search PubMed.
  2. G. Albrecht and G. Zundel, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 553 RSC.
  3. R. Lindemann and G. Zundel, J. Chem. Soc., Faraday Trans. 2, 1977, 73, 788 RSC.
  4. B. Brzezinski, B. Brycki, G. Zundel and T. Keil, J. Phys. Chem., 1991, 95, 8598 CrossRef CAS.
  5. T. Keil, B. Brzezinski and G. Zundel, J. Phys. Chem., 1992, 96, 4421 CrossRef CAS.
  6. B. Brycki, B. Brzezinski, G. Zundel and T. Keil, Magn. Reson. Chem., 1992, 30, 507 CAS.
  7. A. Rabold and G. Zundel, J. Phys. Chem., 1995, 99, 12158 CrossRef CAS.
  8. U. Böhner and G. Zundel, J. Phys. Chem., 1985, 89, 1408 CrossRef.
  9. U. Böhner and G. Zundel, J. Phys. Chem., 1986, 90, 964 CrossRef.
  10. R. Langner and G. Zundel, J. Phys. Chem., 1995, 99, 12214 CrossRef CAS.
  11. S. Geppert, A. Rabold, G. Zundel and M. Eckert, J. Phys. Chem., 1995, 99, 12220 CrossRef CAS.
  12. A. Rabold, R. Bauer and G. Zundel, J. Phys. Chem., 1995, 99, 1889 CrossRef CAS.
  13. A. Albini and S. Pietra, Heterocyclic N-Oxides, CRC-Press, Boca Raton, 1991 Search PubMed.
  14. R. A. Abramovitch and E. M. Smith, in Heterocyclic Compounds, ed. R. A. Abramovitch, Wiley, New York, 1974, vol. 14, part 2, p. 1 Search PubMed.
  15. A. R. Katritzky, E. W. Randall and L. E. Sutton, J. Chem. Soc., 1957, 1769 RSC.
  16. H. Freytag, in Methoden der Organischen Chemie(Houben Weyl), ed. E. Müller, Georg Thieme, Stuttgart, 1958, vol. 11, part 2, p. 190 Search PubMed.
  17. D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965 Search PubMed.
  18. A. K. Covington and R. Thompson, J. Solution Chem., 1974, 3, 603 CAS.
  19. R. Krämer and G. Zundel, J. Chem. Soc., Faraday Trans., 1990, 86, 301 RSC.
  20. G. Zundel, in The Hydrogen Bond–Recent Developments in Theory and Experiments, ed. P. Schuster, G. Zundel and C. SandorfyNorth Holland, Amsterdam, 1976, vol. II, p. 695 Search PubMed.
  21. A. Hayd, E. G. Weidemann and G. Zundel, J. Chem. Phys., 1979, 70, 86 CrossRef CAS.
  22. G. Zundel and A. Murr, Z. Naturforsch. A, 1966, 21, 1640 CAS.
  23. S. Geppert, A. Rabold, G. Zundel and M. Eckert, J. Phys. Chem., 1995, 99, 12220 CrossRef CAS.
  24. E. G. Weidemann and A. Hayd, J. Chem. Phys., 1977, 67, 3713 CrossRef CAS.
  25. J. C. Evans and N. Wright, Spectrochim. Acta, 1960, 16, 352 CrossRef CAS.
  26. J. C. Evans, Spectrochim. Acta, 1960, 16, 994 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.