Rotational spectrum of thiophene···HCl Does thiophene act as an aromatic π-type electron donor or an n-type electron donor in hydrogen-bond formation?

(Note: The full text of this document is currently only available in the PDF Version )

Stephen A. Cooke, Gary K. Corlett and A. C. Legon


Abstract

The rotational spectra of the four isotopomers [32S]-thiophene···H35Cl, [32S]-thiophene···H37Cl, [32S]-thiophene···D35Cl and [34S]-thiophene···H35Cl of a complex formed between thiophene and hydrogen chloride have been observed by using a pulsed-nozzle, Fourier-transform microwave spectrometer. Rotational constants, centrifugal distortion constants and Cl-nuclear quadrupole coupling constants χaa, χbbcc and χab were determined. Interpretation of the spectroscopic constants led to the conclusion that the observed complex has Cs symmetry, with the Cl atom of HCl lying almost directly above the centre of mass of the thiophene ring but with the H atom of HCl pointing at the π-electron density near to the S atom. The S···H–Cl nuclei are almost collinear [ϑ=0.9(6)°] but the relatively large distance r(S···H)=2.7474(29) Å indicates that the S···H interaction is weak. The angle φ between the C2 axis of thiophene and the S···H internuclear line was found to be 64.53(16)°. The distance r(*···Cl)=3.693 Å from the centre of mass (*) of the thiophene ring to Cl and the angle (S*Cl)=98.9° are very similar in magnitude to the corresponding quantities in thiophene···Ar. Indeed, a comparison of thiophene···Ar, thiophene···HCl, benzene···Ar and benzene···HCl revealed a strong family relationship between the geometries of these four complexes. It is concluded that the non-bonding electron pair carried by S in thiophene is so weakly nucleophilic that when thiophene forms a hydrogen bond with HCl it does so via the aromatic π-electron system. In this respect, thiophene resembles benzene and is in stark contrast to its oxygen analogue, furan, with which HCl forms a hydrogen-bonded complex of C2v symmetry via the non-bonding electron pair on O.


References

  1. R. S. Mulliken and W. B. Person, Molecular Complexes: A Lecture and Reprint Volume, Wiley-Interscience, New York, 1969 and references therein Search PubMed.
  2. See, for example, P. B. D. de la Mare and R. Bolton, Electrophilic Additions to Unsaturated Systems, Monograph 4 in the series Reaction Mechanisms in Organic Chemistry, ed. C. Eaborn and E. D. Hughes, Elsevier, Amsterdam, 1966 Search PubMed.
  3. A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Chem. Phys., 1981, 75, 625 CrossRef CAS.
  4. P. D. Aldrich, A. C. Legon and W. H. Flygare, J. Chem. Phys., 1981, 75, 2126 CrossRef CAS.
  5. A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Am. Chem. Soc., 1980, 102, 7584 CrossRef.
  6. A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Am. Chem. Soc., 1982, 104, 1486 CrossRef CAS.
  7. A. C. Legon and D. J. Millen, Faraday Discuss. Chem. Soc., 1982, 73, 71 RSC.
  8. A. C. Legon and D. J. Millen, Chem. Soc. Rev., 1987, 16, 467 RSC.
  9. W. G. Read, E. J. Campbell and G. Henderson, J. Chem. Phys., 1983, 78, 3501 CrossRef CAS.
  10. H. S. Gutowsky, E. Arunan, T. Emilsson, S. L. Tschopp and C. E. Dykstra, J. Chem. Phys., 1995, 103, 3917 CrossRef CAS.
  11. S. A. Cooke, G. K. Corlett and A. C. Legon, J. Chem. Soc., Faraday Trans., 1998, 94, 837 RSC.
  12. J. A. Shea and S. G. Kukolich, J. Chem. Phys., 1983, 78, 3545 CrossRef CAS.
  13. B. B. De More, W. S. Wilcox and J. H. Goldstein, J. Chem. Phys., 1954, 22, 876 CAS.
  14. J. J. Oh, K. W. Hillig, R. L. Kuczkowski and R. K. Bohn, J. Phys. Chem., 1990, 94, 4453 CrossRef CAS.
  15. T. Ogata and K. Kozima, J. Mol. Spectrosc., 1972, 42, 38 CAS.
  16. W. H. Flygare and R. C. Benson, Mol. Phys., 1971, 20, 255; D. H. Sutter and W. H. Flygare, in Topics in Current Chemistry, Springer, Berlin, 1976, vol. 63 and references therein Search PubMed.
  17. A. Hinchliffe, Ab initio Determination of Molecular Properties, Adam Hilger, Bristol, 1987, ch. 5, pp. 68–99 Search PubMed.
  18. T. J. Balle and W. H. Flygare, Rev. Sci. Instrum., 1981, 52, 33 CrossRef CAS.
  19. A. C. Legon, in Atomic and Molecular Beam Methods, ed. G. Scoles, Oxford University Press, New York, 1993, vol. 2, ch. 9 Search PubMed.
  20. A. C. Legon and C. A. Rego, J. Chem. Soc., Faraday Trans., 1990, 86, 1915 RSC.
  21. J. K. G. Watson, J. Chem. Phys., 1968, 48, 4517 CrossRef CAS.
  22. W. Gordy and R. L. Cook, in Microwave Molecular Spectra, Vol. IX in Techniques for Organic Chemistry, ed. A. Weissberger, Interscience, New York, 1970 Search PubMed.
  23. B. Bak, D. Christensen, L. Hansen-Nygaard and J. Rastrup-Andersen, J. Mol. Spectrosc., 1961, 7, 58 CrossRef CAS.
  24. H. I. Bloemink, S. A. Cooke, K. Hinds, A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1995, 91, 1891 RSC.
  25. F. C. DeLucia, P. Helminger and W. Gordy, Phys. Rev. A, 1971, 3, 1848.
  26. A. C. Legon, Faraday Discuss. Chem. Soc., 1994, 97, 19 RSC.
  27. A. C. Legon and J. C. Thorn, Chem. Phys. Lett., 1994, 227, 472 CrossRef CAS.
  28. J. P. Read and A. D. Buckingham, Mol. Phys., 1997, 90, 525 CrossRef CAS.
  29. See A. C. Legon and D. J. Millen, Chem. Phys. Lett., 1988, 147, 484 Search PubMed for a discussion of a range of examples.
  30. E. W. Kaiser, J. Chem. Phys., 1970, 53, 1686 CrossRef CAS.
  31. E. J. Goodwin and A. C. Legon, J. Chem. Soc., Faraday Trans. 2, 1984, 80, 51 RSC.
  32. C. M. Evans and A. C. Legon, Chem. Phys., 1995, 198, 119 CrossRef CAS.
  33. U. Kretschmer, W. Stahl and H. Dreizler, Z. Naturforsch. A, 1993, 48, 1107 CAS.
  34. Th. Bruphacher, J. Makarewicz and A. Bauder, J. Chem. Phys., 1994, 101, 9736 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.