Effects of protic and aprotic solvents on quenching mechanisms involving dimethyl-substituted donors and tetracyanoquinodimethane (TCNQ)

(Note: The full text of this document is currently only available in the PDF Version )

A. K. De, S. Sinha, S. K. Nandy and T. Ganguly


Abstract

Steady-state and time-resolved spectroscopic techniques have been used to study photoinduced quenching reactions e.g. electron transfer (ET), energy transfer processes etc. between the electron donors 3,5-dimethylphenol (3,5-DMP) and 3,5-dimethylanisole (3,5-DMA) and the electron acceptor TCNQ in polar aprotic acetonitrile (ACN) and polar protic ethanol (EtOH) at ambient temperature. In both solvents photoinduced ET reactions are found to be highly exothermic (ΔG0<-2 eV) and appear, since -ΔG0>λ (where λ is the nuclear reorganization energy parameter) and because the electron transfer rate kET decreases with increasing exothermicity, to occur in the Marcus inverted region (MIR). However, relatively larger kET values are observed in ACN than in EtOH. This has been explained in terms of the ordered structure of EtOH due to H-bonding. In ACN, the primary process responsible for quenching of the excited singlet (S1) of the donors in the presence of TCNQ seems to be ET whereas, in EtOH, several other non-radiative processes can occur together with photoinduced ET. ACN would appear to be a better solvent in which to investigate the mechanism of the ET reactions. Reaction schemes showing the possible non-radiative deactivation routes within the donor–acceptor systems in both ACN and EtOH have been proposed.


References

  1. S. Aich, C. Raha and S. Basu, J. Chem. Soc., Faraday Trans, 1997, 93, 2991 RSC.
  2. S. Sinha, R. De and T. Ganguly, J. Phys. Chem. A., 1997, 101, 2852 CrossRef CAS.
  3. S. Sinha, R. De, T. Ganguly, A. K. De and S. K. Nandy, J. Lumin., 1997, 75, 99 CrossRef CAS.
  4. D. Kuciauskes, S. Lin, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, T. Drovetskaya, C. A. Reed and P. D. W. Boyd, J. Phys. Chem., 1996, 100, 15926 CrossRef CAS.
  5. P. F. Barbara, T. J. Meyer and M. A. Ratner, J. Phys. Chem., 1996, 100, 13148 CrossRef CAS.
  6. S. Lin, A. K. W. Taguchi and N. W. Woodbury, J. Phys. Chem., 1996, 100, 17067 CrossRef CAS.
  7. T. Kiyota, M. Yamaji and H. Shizuka, J. Phys. Chem., 1996, 100, 672 CrossRef CAS.
  8. A. Yoshimura, K. Nozaki, N. Ikeda and T. Ohno, J. Phys. Chem., 1996, 100, 1630 CrossRef CAS.
  9. M. Suzuki, Y. Mori, M. Kimura, K. Hanabusa and H. Shirai, J. Chem. Soc., Faraday Trans., 1996, 92, 3599 RSC.
  10. M. Suzuki, S. Kobayashi, M. Kimura, K. Hanabusa, H. Shirai and Y. Kurimura, J. Chem. Soc., Faraday Trans., 1996, 92, 4511 RSC.
  11. S. Green and M. A. Fox, J. Phys. Chem., 1995, 99, 14752 CrossRef CAS.
  12. T. M. Bockman and J. K. Kochi, J. Chem Soc., Perkin Trans. 2, 1994, 1901 RSC.
  13. B. G. Maiya, S. Doraiswamy, N. Periasamy, B. Venkataraman and V. Krishnan, J. Photochem. Photobiol. A, 1994, 81, 139 CrossRef CAS.
  14. S. P. Spooner and D. G. Whitter, J. Am. Chem. Soc., 1994, 116, 1240 CrossRef CAS.
  15. S. Michaeli, V. Meiklyar, M. Schulz, K. Möbius and H. Levanon, J. Phys. Chem., 1994, 98, 7444 CrossRef CAS.
  16. P. P. Levin, S. M. B. Costa and L. F. V. Ferreira, J. Photochem. Photobiol. A, 1994, 82, 137 CrossRef CAS.
  17. F. Scandola, R. Argazzi, C. A. Bignozzi and M. T. Indelli, J. Photochem. Photobiol. A, 1994, 82, 191 CrossRef CAS.
  18. J. Jortner and M. Bixon, J. Photochem. Photobiol. A, 1994, 82, 5 CrossRef CAS.
  19. T. Asahi, M. Ohkohchi, R. Matsusaka, N. Mataga, R. P. Zhang, A. Osuka and K. Meruyama, J. Am. Chem. Soc., 1993, 115, 5665 CrossRef CAS.
  20. P. Siddarth and R. A. Marcus, J. Phys. Chem., 1993, 97, 6111 CrossRef CAS.
  21. J. Kroon, H. Oevering, J. W. Verhoeven, J. M. Wermen, A. M. Oliver and M. N. Paddon-Row, J. Phys. Chem., 1993, 97, 5065 CrossRef CAS.
  22. S. Franzen, R. F. Goldstein and S. G. Boxer, J. Phys. Chem., 1993, 97, 3040 CrossRef CAS.
  23. R. De, S. Bhattacharyya and T. Ganguly, Spectrochim. Acta A, 1992, 50, 325 CrossRef.
  24. M. R. Wasielewski, Chem. Rev., 1992, 92, 435 CrossRef CAS.
  25. K. F. Purcell and B. Blaive, in Photoinduced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988, part A, p. 123 Search PubMed.
  26. G. P. Zanini, H. A. Montejano and C. M. Previtali, J. Chem. Soc., Faraday Trans., 1995, 91, 1197 RSC.
  27. (a) B. Zelent, P. Messier, D. Gravel, S. Gauthier and G. Durocher, J. Photochem. Photobiol. A, 1987, 40, 145 CrossRef CAS; (b) H. Yu, W. J. Colucci, M. L. Mclaughein and M. D. Barklay, J. Am. Chem. Soc., 1992, 114, 8449 CrossRef CAS.
  28. P. Jana, R. De and T. Ganguly, J. Lumin., 1994, 59, 1 CrossRef CAS.
  29. (a) L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson and W. E. Mochel, J. Am. Chem. Soc., 1962, 84, 3374 CrossRef CAS; (b) R. Forster and T. J. Thomson, Trans. Faraday Soc., 1962, 58, 860 RSC.
  30. T. Ganguly, D. K. Sharma, S. Gauthier, D. Gravel and G. Durocher, J. Phys. Chem., 1992, 96, 3757 CrossRef.
  31. D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259 CAS.
  32. G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401 CrossRef CAS.
  33. H. Heitele, P. Finckh, S. Weeren, F. Pollinger and M. E. Michel-Beyerle, J. Phys. Chem., 1989, 93, 5173 CrossRef CAS.
  34. K. K. Rohatgi-Mukherjee, in Fundamentals of Photochemistry, Wiley Eastern Limited, New Delhi, 1978, p. 195 Search PubMed.
  35. K. Kikuchi, J. Photochem. Photobiol. A, 1992, 65, 149 CrossRef CAS.
  36. M. Tachiya and S. Murata, J. Phys. Chem., 1992, 96, 8441 CrossRef CAS.
  37. K. Chatterjee, S. Laha, S. Chakravorti, T. Ganguly and S. B. Banerjee, J. Chem. Soc., Perkin Trans. 2, 1986, 79 RSC.
  38. M. M. Windsor, in Physics and Chemistry of the Organic Solid State, ed. D. Fox, M. M. Labes and A. W. Weissberger, Interscience, New York, 1965 Search PubMed.
  39. T. Förster, in Comparative Effects of Radiation, ed. M. Burton, J. S. Kirby-Smith and J. L. Magee, Wiley, New York, 1960 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.