Rate constants and equilibria of monochelate formation of iron(III) with 2-acetylcyclohexanone

(Note: The full text of this document is currently only available in the PDF Version )

Carlos A. Blanco and Antonio Rojas


Abstract

Kinetics and equilibria in aqueous 1:1 chelation of iron(III) by 2-acetylcyclohexanone have been investigated spectrophotometrically in aqueous solution at 25°C and 0.5 mol dm-3 NaClO4. In conjunction with earlier work, the results suggest that the deprotonation rate of the keto tautomer of 2-acetylcyclohexanone has a minimum value when compared with 1,3-dicarbonylic ligands of similar structure. The mechanism proposed to account for the kinetic data involves pathways in which both Fe3+ and Fe(OH)2+ react with the enol tautomer of the ligand. The relative rates of complex formation are shown to depend not only on the metal species involved but also on ligand structure factors such as steric hindrances, ring strain and intramolecular hydrogen bonding.


References

  1. M. A. Ribeiro Da Silva, NATO ASI Ser., Ser. C., 1984, 119, 317 Search PubMed.
  2. R. C. Mehrota, R. Bohra and D. P. Gaur, Metal β-Diketonates and Allied Derivatives, Academic Press, London, 1978 Search PubMed.
  3. M. J. Hynes, Rev. Inorg. Chem., 1991, 11, 21 Search PubMed.
  4. C. Blanco and M. J. Hynes, Inorg. Chim. Acta, 1990, 173, 115 CrossRef CAS.
  5. N. Cir and L. W. Reeves, Can. J. Chem., 1965, 43, 3057.
  6. D. Lee, C. K. Kim, B. S. Lee, I. Lee and B. C. Lee, J. Comput. Chem., 1997, 18, 56 CrossRef CAS.
  7. H. German, (Dow Chemical Co.)US Pat., 4, 324, 676, 1982 Search PubMed.
  8. A. Johansson, Analyst (London), 1970, 95, 535 RSC.
  9. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  10. P. Maroni and J. P. Calmon, Bull. Soc. Chim., 1964, 519 Search PubMed.
  11. P. Job, Ann. Chim., 1928, 9, 13.
  12. J. H. Yoe and A. L. Jones, Ind. Eng. Chem. Anal. Ed., 1944, 16, 11 Search PubMed.
  13. A. Ringbom, Formación de complejos en Química Analítica, Alhambra, Madrid, 1979 Search PubMed.
  14. G. H. Khoe, P. L. Brown, R. N. Sylva and R. G. Robins, J. Chem. Soc., Dalton Trans., 1986, 1901 RSC.
  15. M. L. Moyá, A. Rodriguez, F. Sanchez, C. Blanco and M. J. Hynes, Int. J. Chem. Kinet., 1992, 24, 359 CAS.
  16. M. Eigen and L. C. Maeyer, in Techniques of Organic Chemistry, ed. S. L. Friess, E. S. Lewis and A. Weissberger, Interscience, New York, 1963, vol. VIII, part II Search PubMed.
  17. C. A. Blanco and J. Sumillera, New J. Chem., 1994, 18, 223 Search PubMed.
  18. K. A. K. Ebraheem, S. T. Hamdi and M. N. Khalaf, Can. J. Spectrosc., 1981, 26, 225 Search PubMed.
  19. W. M. Coleman and B. M. Gordon, Appl. Spectrosc., 1988, 42, 666 CAS.
  20. C. F. Bernasconi, D. A. A. Ohlberg and M. W. Stronach, J. Org. Chem., 1991, 56, 3016 CrossRef CAS.
  21. C. F. Bernasconi, Tetrahedron, 1985, 41, 3219 CrossRef CAS; Acc. Chem. Res., 1987, 20, 301 Search PubMed.
  22. M. Grant and R. B. Jordan, Inorg. Chem., 1980, 20, 55.
  23. A. E. Merbach, Pure Appl. Chem., 1982, 54, 1479 CAS.
  24. F. K. Meyer, A. R. Monnerat, K. E. Newman and A. E. Merbach, Inorg. Chem., 1982, 21, 774 CrossRef CAS.
  25. A. E. Merbach, Pure Appl. Chem., 1987, 59, 161 CAS.
  26. J. Burgess, Metal Ions in Solution, Wiley, Chichester, 1990 Search PubMed.
  27. D. P. Fay, A. R. Nichols and N. Sutin, Inorg. Chem., 1971, 10, 2096 CrossRef CAS.
  28. M. J. Hynes and B. D. O'Regan, J. Chem. Soc., Dalton Trans., 1980, 7 RSC.
  29. M. R. Jaffe, D. P. Fay, M. Cefola and N. Sutin, J. Am. Chem. Soc., 1971, 93, 2878 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.