Diffusion of weak acids in salt solutions Maleic acid+NaCl+water

(Note: The full text of this document is currently only available in the PDF Version )

Susan Wright and Derek G. Leaist


Abstract

A Taylor dispersion tube has been used to measure binary mutual diffusion in aqueous solutions of partially dissociated maleic acid (H2MH++HM-). The diffusion coefficients of the molecular acid and the hydrogen maleate ion are estimated from the results. To investigate the effects of added salt on the transport of a weak electrolyte, quaternary mutual diffusion coefficients are reported for aqueous maleic acid+NaCl solutions. The cross-diffusion coefficients for this system indicate that the gradient in maleic acid drives large coupled flows of NaCl and HCl components. Nernst–Planck equations are used to interpret these results. The analysis shows that the addition of NaCl leads to a dramatic increase in the rate of diffusion of H+ ions because they are no longer required to diffuse at the same speed as the less-mobile HM- ions to maintain electroneutrality. Also, the electric field generated by the diffusing acid drives a large counter-current coupled flow of Na+ ions and a large co-current coupled flow of Cl- ions. Each mole of diffusing maleic acid co-transports up to 5 mol HCl and counter-transports up to 1.5 mol NaCl. The results for the aqueous maleic acid+NaCl solutions provide a guide to the diffusion behaviour of the environmentally important SO2+seawater system.


References

  1. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 2nd edn., 1950, ch. 15 Search PubMed.
  2. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Academic Press, New York, 2nd edn., 1959, ch. 12, Appendices 6.1 and 12.1 Search PubMed.
  3. D. Pletcher, Industrial Electrochemistry, Chapman and Hall, London, 1982 Search PubMed.
  4. D. G. Leaist, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 581 RSC.
  5. V. Vitagliano and P. A. Lyons, J. Am. Chem. Soc., 1956, 78, 4538 CrossRef CAS.
  6. D. G. Leaist and P. A. Lyons, J. Solution Chem., 1984, 13, 77 CrossRef CAS.
  7. W. L. German, G. H. Jeffery and A. I. Vogel, Philos. Mag., 1936, 22, 790 Search PubMed.
  8. C. Dobrogowska and L. G. Hepler, J. Solution Chem., 1983, 12, 153 CAS.
  9. H. J. V. Tyrrell and K. R. Harris, Diffusion in Liquids, Butterworths, London, 1984. p. 193 Search PubMed.
  10. D. G. Leaist, J. Phys. Chem., 1993, 97, 1464 CrossRef CAS.
  11. D. G. Leaist and L. Hao, J. Solution Chem., 1993, 22, 1464 CrossRef.
  12. E. A. Guggenheim, Philos. Mag., 1935, 19, 588 Search PubMed.
  13. J. A. Rard and D. G. Miller, J. Solution Chem., 1979, 8, 701 CrossRef CAS.
  14. J. S. Newman, Electrochemical Systems, Prentice Hall, Englewood Cliffs, NJ, 1973 Search PubMed.
  15. D. G. Leaist, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 3069 RSC.
  16. D. G. Leaist, J. Colloid Interface Sci., 1987, 118, 262 CAS.
  17. D. G. Leaist and L. Hao, J. Chem. Soc., Faraday Trans., 1993, 89, 2775 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.