Reduction enhancement of Fe2O3 in physical mixtures with Pt/mordenite via Pt migration or ‘hydrogen spillover’

(Note: The full text of this document is currently only available in the PDF Version )

Gerd Fröhlich and Wolfgang M. H. Sachtler


Abstract

Mixing Fe2O3 with Pt/NaMor of similar grain size, followed by grinding in a mortar and calcination in O2, leads to a remarkable enhancement of the reducibility of the Fe2O3 with hydrogen. The TPR profile of such mixtures is virtually identical with that of Fe2O3 onto which Pt was deposited chemically. It is concluded that in the ground and calcined mixtures Pt migration from the zeolite to the iron oxide is crucial. Upon varying the amount of deposited Pt in Pt/Fe2O3 between 0.001% and 1%, TPR profiles are obtained showing two discrete peaks characterizing a Pt promoted and an unpromoted reduction of Fe2O3 respectively. No Pt migration occurs in mixtures of prereduced Pt/NaMor with Fe2O3; this shows that surface migration of P clusters is negligible, but transport of PtO2 either through the gas phase or via the surface is likely. Pt migration is also detectable at room temperature in mixtures stored for weeks in a moist atmosphere; in this case the data suggest surface migration of hydrated Pt2+ ions; the TPR profiles are distinctly different from those of the mixtures calcined in O2. TPR also permits discrimination between the promotion of oxide reduction by migrating Pt and ‘true’ hydrogen spillover. The latter phenomenon requires transport of H atoms via protons and electrons and is realized with powder mixtures containing a semiconducting oxide, such as TiO2. Its TPR signature is a broad peak located between those for unpromoted and Pt promoted reduction. Physical mixtures of Fe2O3 and Pt/NaMor catalyze the reduction of acetic acid vapor to acetaldehyde via a Mars–van Krevelen mechanism. In this case Pt migration helps to regenerate oxygen vacancies in the Fe3O4 surface, whereas direct contact of CH3CO2H vapor with Pt results in the formation of methane and higher hydrocarbons. The promoting effect of Pt is not observed after prereduction of Pt/NaMor, because P does not migrate effectively under the conditions used.


References

  1. J. M. Sinfelt and P. J. Lucchesi, J. Am. Chem. Soc., 1963, 85, 3365 CrossRef CAS.
  2. S. Khoobiar, J. Phys. Chem., 1964, 68, 411 CrossRef.
  3. J. Kuriacose, Ind. J. Chem., 1967, 5, 646 Search PubMed.
  4. M. Boudart, Adv. Catal., 1969, 20, 153 CAS.
  5. W. C. Conner, S. J. Teichner and G. M. Pajonk, Adv. Catal., 1986, 34, 1.
  6. W. C. Conner and J. L. Falconer, Chem. Rev., 1995, 95, 759 CrossRef CAS.
  7. G. M. Pajonk, in Handbook of Heterogeneous Catalysis, ed. G. Ertl, H. Knözinger and J. Weitkamp, Wiley-Verlag Chemie, Weinheim, 1997, vol. 3, p. 1064 Search PubMed.
  8. R. V. Dimitriev, K.-H. Steinberg, A. N. Detjuk, F. Hofmann, H. Bremer and K. M. Minachev, J. Catal., 1980, 65, 105 CrossRef.
  9. D. H. Lenz and W. C. Conner, J. Catal., 1987, 104, 288 CAS.
  10. E. Baumgarten, R. Wagner and C. Lentes-Wagner, J. Catal., 1987, 104, 307 CAS.
  11. U. Roland, H. G. Karge and H. Winkler, in Zeolites and Related Microporous Materials: State of the Art 1994, Stud. Surf. Sci. Catal., ed. H. G. K. J. Weitkamp, H. Pfeifer and W. Hölderlich, Elsevier Science, Amsterdam, 1994, vol. 84, p. 1239 Search PubMed.
  12. F. Roessner and U. Roland, J. Mol. Catal., 1996, 112, 401 Search PubMed.
  13. B. Q. Xu and W. M. H. Sachtler, in Spillover and Migration of Surface Species on Catalysis, Stud. Surf. Sci. Catal., ed. C. Li and Q. Xin, Elsevier Science, Amsterdam, 1997, vol. 112, p. 229 Search PubMed.
  14. J. S. Feeley and W. M. H. Sachtler, Zeolites, 1990, 10, 738 CAS.
  15. J. S. Feeley and W. M. H. Sachtler, J. Catal., 1991, 131, 573 CrossRef CAS.
  16. W. M. H. Sachtler, Z. Zhang, A. Y. Stakheev and J. S. Feeley, in New Frontiers in Catalysis, Proc. 10th Int. Congr. Catalysis, ed. F. S. A. L. Guczi and P. Tetenyi, Elsevier Science, Budapest, 1993, part A, p. 271 Search PubMed.
  17. S. M. Augustine, M. S. Nacheff, C. M. Tsang, J. B. Butt and W. M. H. Sachtler, Proc. 9th Int. Congr. Catal., 1988, ed. M. J. Phillips and M. Ternan, Chemical Institute of Canada, Calgary, 1988, vol. 3, p. 1190 Search PubMed.
  18. R. Pestman, R. M. Koster, J. A. Z. Pieterse and V. Ponec, J. Catal., 1997, 168, 255 CrossRef CAS.
  19. R. Pestman, Thesis, National University of Leiden, Leiden, 1995.
  20. G. Xu, Y. Zhu, J. Ma, H. Yan and Y. Xie, in Spillover and Migration of Surface Species on Catalysts, Stud. Surf. Sci. Catal., ed. C. Li and Q. Xin, Elsevier Science, Amsterdam, 1997, vol. 112, p. 333 Search PubMed.
  21. O. J. Wimmers, P. Arnoldy and J. A. Moulijn, J. Phys. Chem., 1986, 90, 1331 CrossRef CAS.
  22. U. Roland, R. Salzer, T. Braunschweig, F. Roessner and H. Winkler, J. Chem. Soc., Faraday Trans., 1995, 91, 1091 RSC.
  23. U. Roland, R. Salzer and L. Sümmchen, in Spillover and Migration of Surface Species on Catalysts, Stud. Surf. Sci. Catal., ed. C. Li and Q. Xin, Elsevier Science, Amsterdam, 1997, vol. 112, p. 339 Search PubMed.
  24. C. B. Alcock and G. W. Hooper, Proc. R. Soc. London, Ser. A, 1960, 254, 551.
  25. H. Schäfer and A. Tebben, Z. Anorg. Chem., 1960, 304, 317 Search PubMed.
  26. D. Hildenbrand, K.-H. Lau and J. G. McCarthy, in Abstracts 13th North American Meeting of the Catalysis Society May 2–6 1993, paper PA38, ed. G. L. Haller, A. Varmice, J. Goodwin and T. Mazanec, The Catalysis Society Search PubMed.
  27. F. Roessner, U. Roland and T. Braunschweig, J. Chem. Soc., Faraday Trans., 1995, 91, 1539 RSC.
  28. S. T. Homeyer and W. M. H. Sachtler, J. Catal., 1989, 117, 91 CrossRef CAS.
  29. S. T. Homeyer and W. M. H. Sachtler, J. Catal., 1989, 118, 266 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.