Experimental and theoretical proton affinity of limonene

(Note: The full text of this document is currently only available in the PDF Version )

M. Tereza Fernandez, Chris Williams, Rod S. Mason and Benedito J. Costa Cabral


Abstract

Gas-phase basicity (GB) and proton affinity (PA) of limonene were derived from measurements of proton transfer equilibria carried out by high pressure pulsed electron beam source mass spectrometry. Experimental GB and PA are 842±5 kJ mol-1 and 875±5 kJ mol-1, respectively. The proton affinity of C10H16 is compared to abinitio (HF and MP2) and density functional predictions for the protonation energy. Theoretical calculations based on density functional theory are in very good agreement with experimental results. Our best theoretical predictions for the enthalpy of protonation range from 869.6 kJ mol-1 (B3PW91/6-31G*) to 873.9 kJ mol-1 (BLYP/6-31G*). Theoretical calculations also suggest an important reorganisation of the molecular structure and charge distribution of limonene after protonation.


References

  1. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, 40.
  2. P. D. J. Anderson, M. Tereza Fernandez, G. Pocsfalvi and R. S. Mason, J. Chem. Soc., Perkin Trans. 2, 1997, 873 RSC.
  3. R. Atkinson, D. Hasewaga and S. M. Aschmann, Int. J. Chem. Kinet., 1990, 22, 871 CrossRef CAS.
  4. R. Atkinson, S. M. Aschman, J. Arey and B. Shorees, J. Geophys. Res., 1992, 5, 6065.
  5. K. H. Becker, K. J. Brockman and J. Bechara, Nature (London), 1990, 346, 256 CAS.
  6. D. Kotzias, K. Fytianos and F. Geiss, Atmos. Environ., Part A, 1990, 24, 2127.
  7. C. Johansson and R. W. Janson, J. Geophys. Res., 1993, 98, 5121 CAS.
  8. C. S. White, J. Chem. Ecol., 1994, 20, 1381 Search PubMed.
  9. M. Herraiz, G. Reglero, T. Herraiz and E. Loyola, J. Agric. Food Chem., 1990, 38, 1540 CrossRef CAS.
  10. Y. Z. Chen, Z. L. Li, D. Y. Xue and L. M. Qi, Anal. Chem., 1987, 59, 744 CrossRef CAS.
  11. A. Parry, M. T. Fernandez, M. Garley and R. S. Mason, J. Chem. Soc., Faraday Trans., 1992, 88, 3331 RSC.
  12. R. S. Mason and P. D. J. Anderson, Int. J. Mass Spectrom. Ion Proc., 1997, 161, L1 CrossRef CAS.
  13. E. P. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 1997, in press. The values of GB and PA of the reference basis were taken from a pre-publication in the internet http://webbock.nist.gov Search PubMed.
  14. M. Meot-Ner and L. W. Sieck, J. Am. Chem. Soc., 1991, 113, 4448 CrossRef.
  15. J. B. Foresman and Æ. Frisch, in Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 1995 Search PubMed.
  16. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  17. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  18. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  19. J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244 CrossRef.
  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Repogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Gaussian Inc., Pittsburgh, PA, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.