Evidence for a potential-dependent reversible inactivation of urease adsorbed on a gold electrode

(Note: The full text of this document is currently only available in the PDF Version )

B. R. Horrocks and M. V. Mirkin


Abstract

The potentiometric collection mode of the scanning electrochemical microscope has been applied to a kinetic study of changes in immobilised enzyme activity. Urease adsorbs spontaneously onto gold surfaces from aqueous solution and the immobilised enzyme was shown to retain activity as a catalyst for the hydrolysis of urea to ammonium and bicarbonate ions. Urease activity was monitored using an ion-selective potentiometric tip electrode to detect a product (NH4+) of the enzymatic reaction and the use of a 50 µm radius gold electrode to immobilise the enzyme results in a steady state diffusion field for the reaction products and enables quantitative interpretation of the data. The ammonium ion flux determined from the tip potential decreased by approximately 40% when the potential of the gold was scanned or stepped across the range from 0.0 to+0.4 V vs. Ag/AgCl. The decrease in flux is reversible and the original value almost completely recovered after the potential was returned to 0 V. The flux decrease is attributed to inactivation of the enzyme. The timescale of the inactivation is limited by the establishment of a steady state concentration profile of ammonium ions at the 50 µm radius source. The kinetics of the reactivation are significantly slower with an apparent first order rate constant of 0.022 s-1. No faradaic processes were observed at the gold electrode over the potential range from 0.0 to +0.4 V. We therefore suggest that changes in the enzyme quaternary structure due to the changing electric field and ionic composition at the interface are responsible.


References

  1. A. M. Klibanov, Science, 1983, 219, 722 CrossRef CAS; G. G. Guilbault, Analytical uses of Immobilised Enzymes, in Modern Monographs in Analytical Chemistry, ed. G. G. Guilbault, Marcel Dekker, New York, 1984, vol. 2 Search PubMed.
  2. A. P. F. Turner, I. Karube and G. S. Wilson, Biosensors, Fundamentals and Applications, Oxford University Press, Oxford, 1987 Search PubMed.
  3. L. Hausling, H. Ringsdorf, F.-J. Schmitt and W. Knoll, Langmuir, 1991, 7, 1837 CrossRef.
  4. J. H. Wang, L. W. Ruddock and A. E. G. Cass, Biosens. Bioelectron., 1994, 9, 647 CrossRef CAS.
  5. Th. Wink, S. J. van Zuilen, A. Bult and W. P. van Bennekom, Analyst, 1997, 122, 43R RSC and references therein.
  6. A. S. Ghatorae, G. Bell and P. J. Halling, Biotechnol. Bioeng., 1994, 43, 331 CrossRef; E. Katchalski, I. Silman and R. Goldman, Adv. Enzymol., 1971, 34, 445 Search PubMed; K. M. R. Kallury, W. E. Lee and M. Thompson, Anal. Chem., 1993, 65, 2459 CAS.
  7. E. L. Schmid, T. A. Keller, Z. Dienes and H. Vogel, Anal. Chem., 1997, 69, 1979 CrossRef CAS; I. Willner, E. Katz, B. Willner, R. Blonder, V. Heleg-Shabatai and A. F. Buckmann, Biosens. Bioelectron., 1997, 12, 337 CrossRef CAS; C. Kranz, T. Lotzbeyer, H.-L. Schmidt and W. Schuhmann, Biosens. Bioelectron., 1997, 12, 257 CrossRef CAS.
  8. A. L. Crumbliss, S. C. Perine, J. Stonehuerner, K. R. Tubergen, J. G. Zhao and R. W. Henkens, Biotechnol. Bioeng., 1992, 40, 483 CrossRef CAS.
  9. J. Hirst, A. Sucheta, B. A. C. Ackrell and F. A. Armstrong, J. Am. Chem. Soc., 1996, 118, 5031 CrossRef CAS; K. S. V. Santhanam, N. Jespersen and A. J. Bard, J. Am. Chem. Soc., 1977, 99, 274 CrossRef CAS.
  10. K. L. Egodage, B. S. de Silva and G. S. Wilson, J. Am. Chem. Soc., 1997, 119, 5295 CrossRef CAS.
  11. K. L. Mclachlan and A. L. Crumbliss, Biotechnol. Bioeng., 1991, 37, 491 CAS.
  12. B. R. Horrocks and A. J. Bard, unpublished data.
  13. D. Ammann, Ion Selective Microelectrodes: Principles, Design and Application, Springer-Verlag, Berlin, 1986 Search PubMed.
  14. D. O. Wipf and A. J. Bard, J. Electrochem. Soc., 1991, 138, 469 CAS.
  15. B. R. Horrocks, M. V. Mirkin, D. T. Pierce, A. J. Bard, K. Toth and G. Nagy, Anal. Chem., 1993, 65, 1213 CrossRef; E. Klusmann and J. W. Schultze, Electrochim. Acta, 1997, 42, 3123 CrossRef CAS.
  16. P. Vanysek, in CRC Handbook of Chemistry and Physics, ed. D. R. Lide, 73rd edn., CRC press, Boca Raton, FL, 1992 Search PubMed.
  17. J. Peterson, K. Harmon and C. Nieman, J. Biol. Chem., 1948, 176, 1 CAS.
  18. A. S. Ghatorae, M. J. Guerra, G. Bell and P. J. Halling, Biotechnol. Bioeng., 1994, 44, 1355 CrossRef CAS.
  19. R. W. Lencki, J. Arul and R. J. Neufeld, Biotechnol. Bioeng., 1992, 40, 1421; 1427 CAS.
  20. R. W. Lencki and R. J. Neufeld, Enzyme Microb. Technol., 1996, 19, 232 CrossRef CAS.
  21. C. C. Contaxis and F. J. Reithel, J. Biol. Chem., 1971, 246, 677 CAS.
  22. S. Omar and M. Beauregard, J. Biotechnol., 1995, 39, 221 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.