Low pressure thermodynamic excess functions for mixtures of low molecular mass liquids at 20–30 K Attempted interpretations using van der Waals equation of state

(Note: The full text of this document is currently only available in the PDF Version )

Jack McCoubrey


Abstract

Accepted interpretations of the highly non-ideal excess functions for the liquid mixtures of similar sized particles of neon with deuterium and with hydrogen, purely in terms of mass (quantum) differences are reviewed. Application of van der Waals equation to all three combinations of these liquids shows that when using like pair fluid parameters corrected to fit liquid vapour pressures, the excess functions of the H2–D2 mixture can be explained using the parameters of the pure fluids together with the Lorentz-Berthelot combining rules for the unlike pair. In contrast, substantial unlike pair departures from a geometric mean combining rule are required to fit the thermodynamic excess functions of the neon mixtures similarly. Even after correction for differences in ionisation potential and in size between neon and the hydrogen isotopes, as it affects the unlike molecular pair forces relative to the like pair forces in these mixtures, there is still a considerable residue unexplained. It seems necessary to presume either that the b parameters are strongly temperature dependent as well as the a parameters in the van der Waals equation, or more likely, that the anisotropic intermolecular interactions of the hydrogen isotopes are involved in these low temperature liquids giving rise to weak unlike pair interactions with neon


References

  1. L. A. K. Staveley, Chem. Soc. Rev., 1984, 13, 173 RSC.
  2. H. F. P. Knapp, R. J. J. Heigningen, J. Korving and J. J. Leemakker, Physica, 1962, 28, 343 Search PubMed.
  3. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd edn. Butterworths, London, 1982 Search PubMed.
  4. R. J. Coruccini, Pure and Applied Cryogenics, Pergamon Press, Oxford, 1965, vol. 5 Search PubMed.
  5. J. O. Hirschfelder, C. F. Curtis and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954 Search PubMed.
  6. R. Reid, J. M. Prausnitz and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 4th edn., 1987 Search PubMed.
  7. J. P. Brouwer, C. J. N. Meijddenberg and J. J. M. Beenakker, Physica, 1970, 50, 93 Search PubMed.
  8. I. Prigogine, R. Bingen and A. Bellemans, Physica, 1954, 20, 633 Search PubMed.
  9. J. Bigeleisen, J. Chem. Phys., 1961, 34, 1485 CrossRef CAS.
  10. G. Jansco, L. P. N. Rebelo and W. A. Van Hook, Chem. Soc. Rev., 1994, 23, 257 RSC.
  11. J. P. Brouwer, A. M. Vessepoel, C. J. N. Van den Meijdenberg and J. J. M. Beenakker, Physica, 1970, 50, 125 Search PubMed.
  12. M. J. Hiza and A. G. Duncan, AIChE J., 1970, 16, 733 CAS.
  13. J. M. Gilligan and E. E. Eyler, Phys. Rev. A, 1992, 46, 3677 CrossRef CAS.
  14. Handbook of Chemistry and Physics, The Chemical Rubber Company, Cleveland, OH, 46th edn., 1966 Search PubMed.
  15. A. Andereko, Fluid Phase Equilib., 1990, 61, 145 CrossRef.
  16. G. Soave, Fluid Phase Equilib., 1986, 31, 203 CrossRef CAS.
  17. M. L. McGlashan, Trans. Faraday Soc., 1970, 66, 18 RSC.
  18. G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, Intermolecular Forces, Clarendon Press, Oxford, 1981 Search PubMed.
  19. P. T. Sikora, J. Phys. B, 1970, 3, 1475 CrossRef CAS.
  20. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 Search PubMed.
  21. D. Ben-Amotz and D. R. Herschbach, J. Phys. Chem., 1990, 94, 1038 CrossRef CAS.
  22. E. A. Guggenheim and M. L. McGlashan, Proc. R. Soc., London, Ser. A, 1951, 206, 448.
Click here to see how this site uses Cookies. View our privacy policy here.