Structural studies of the intercalated smectic C phases formed by the non-symmetric α-(4-cyanobiphenyl-4′-yloxy)-ω-(4-alkylaniline- benzylidene-4′-oxy) alkane dimers using EPR spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

P. J. Le Masurier and G. R. Luckhurst


Abstract

Many examples of intercalated smectic C and A phases, exhibited by liquid crystal dimers, have been reported. While odd spacer dimers tend to form smectic C phases, even spacer dimers tend to give smectic A phases. The tendency to exhibit smectic C phases appears to be related to the bent nature of the dimer, in which the mesogenic groups are inclined to each other for the majority of the spacer conformations. The non-symmetric α-(4-cyanobiphenyl-4′-yloxy)-ω-(4-alkylanilinebenzylidene-4′-oxy)alkanes (CBOnm) do, however, exhibit intercalated smectic A and C phases, both formed by odd spacer dimers. As yet, no satisfactory explanation as to the difference between the intercalated smectic A and C phases, for odd spacer dimers, has been developed. Here, we report the results from angle-dependent EPR experiments and their analysis. Our results indicate that, within the intercalated smectic A phase, the mesogenic groups of the odd spacer dimers are, on average, parallel with the smectic layer normal. On entering the smectic C phase a tilt is observed which, for the CBO11O.6 dimer, is found to have a maximum value of 18°. A partial alignment of the tilt directions is also observed in the EPR magnetic field, which contrasts with the behaviour of the smectic C phase formed by monomeric liquid crystals. The results are compared with XRD studies on an aligned sample of the related dimer CBO9O.6.


References

  1. G. R. Luckhurst, Macromol. Symp., 1995, 96, 1 CAS.
  2. P. J. Barnes, A. G. Douglass, S. K. Heeks and G. R. Luckhurst, Liq. Cryst., 1993, 13, 603 CAS.
  3. R. W. Date, C. T. Imrie, G. R. Luckhurst and J. M. Seddon, Liq. Cryst., 1992, 12, 203 CAS.
  4. J. L. Hogan, C. T. Imrie and G. R. Luckhurst, Liq. Cryst., 1988, 3, 645 CAS.
  5. G. S. Attard, S. Garnett, C. G. Hickman, C. T. Imrie and L. Taylor, Liq. Cryst., 1990, 7, 495 CAS.
  6. C. T. Imrie, Liq. Cryst., 1989, 6, 391 CAS.
  7. A. C. Griffin and S. R. Vaidya, Liq. Cryst., 1988, 3, 1275 CAS.
  8. G. S. Attard, C. T. Imrie and F. E. Karasz, Chem. Mater., 1992, 4, 1246 CrossRef CAS.
  9. G. S. Attard, R. W. Date, C. T. Imrie, G. R. Luckhurst, S. J. Roskilly, J. M. Seddon and L. Taylor, Liq. Cryst., 1994, 16, 529 CrossRef CAS.
  10. S. K. Heeks and G. R. Luckhurst, J. Chem. Soc., Faraday Trans., 1993, 89, 3289 RSC.
  11. A. E. Blatch, I. D. Fletcher and G. R. Luckhurst, Liq. Cryst., 1995, 18, 801 CAS.
  12. J. Watanabe, H. Komura and T. Niori, Liq. Cryst., 1993, 13, 455 CrossRef CAS.
  13. T. Niori, S. Adachi and J. Watanabe, Liq. Cryst., 1995, 19, 139 CAS.
  14. J. Watanabe and S. J. Kinoshita, J. Phys. II France, 1992, 2, 1237 Search PubMed.
  15. J. Watanabe and M. Hayashi, Macromolecules, 1989, 22, 4083 CrossRef CAS.
  16. A. Wulf, Mol. Cryst. Liq. Cryst., 1978, 47, 225 CAS.
  17. G. R. Luckhurst, M. Ptak and A. Sanson, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 1752 RSC.
  18. G. R. Luckhurst, B. A. Timimi, V. G. K. M. Pisipati and N. V. S. Rao, Mol. Cryst. Liq. Cryst. Lett., 1985, 1, 45 Search PubMed.
  19. G. R. Luckhurst, in Liquid Crystals Plastic Crystals, ed. G. W. Gray and P. A. Windsor, Ellis Horwood, Chichester, 1974, ch. 7 (book 2) Search PubMed.
  20. P. J. Le Masurier, Ph. D. Thesis, 1996, University of Southampton.
  21. R. H. Templer, S. M. Gruner and E. F. Eikenberry, Adv. Electron. Phys., 1988, 74, 275 Search PubMed.
  22. G. R. Luckhurst and A. Sanson, Mol. Phys., 1972, 24, 1297 CAS.
  23. G. R. Luckhurst, S. W. Smith and F. Sundholm, Acta Chem. Scand. A, 1987, 41, 218.
Click here to see how this site uses Cookies. View our privacy policy here.