Rate constant calculations for atom–diatom reaction involving an open-shell atom and a molecule in a Σ electronic state Application to the reaction Al(2P1/2,3/2)+O2(X3Σg-)→AlO(X2Σ+) +O(3P2,1,0)

(Note: The full text of this document is currently only available in the PDF Version )

D. Reignier, T. Stoecklin, S. D. Le Picard, A. Canosa and B. R. Rowe


Abstract

We present a short study of the influence of the open-shell nature of the reactants on the kinetics of the title reaction. We use the adiabatic capture centrifugal sudden approximation (ACCSA) method and a long-range potential comprising the sum of the quadrupole–quadrupole, spin–orbit and dispersion contributions. Matrix elements of this potential are evaluated in the spin–orbit basis set of each reactant for the Al(2P1/2,3/2)+O2(X3Σg-) reaction and used within the ACCSA method to calculate the temperature dependence of the rate constant in the range 15–300 K. In the limit of zero temperature, the reactivities of the two spin–orbit states of the aluminium atom, Al(2P1/2) and Al(2P3/2), towards the O2 molecule are demonstrated to be different and analytical formulae for the rate constants are obtained as a function of temperature.


References

  1. A. Canosa, I. R. Sims, D. Travers, I. W. M. Smith and B. R. Rowe, Astron. Astrophys., 1997, 323, 644 Search PubMed; L. B. Herbert, I. R. Sims, I. W. M. Smith, D. W. A. Stewart, A. C. Symonds, A. Canosa and B. R. Rowe, J. Phys. Chem., 1996, 100, 14928 CrossRef CAS; I. R. Sims, I. W. M. Smith, P. Bocherel, A. Defrance, D. Travers and B. R. Rowe, J. Chem. Soc., Faraday Trans., 1994, 90, 1473 RSC; I. R. Sims, J. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. R. Rowe and I. W. M. Smith, J. Chem. Phys., 1992, 97, 8798 CrossRef CAS.
  2. N. Haider and D. Husain, J. Photochem. Photobiol. A, 1993, 70, 119 CrossRef CAS.
  3. D. Husain, J. Chem. Soc., Faraday Trans., 1993, 89, 2164 Search PubMed.
  4. D. C. Clary, N. Haider, D. Husain and M. Kabir, Astrophys. J., 1994, 422, 416 CrossRef CAS.
  5. Q. Liao and E. Herbst, Astrophys. J., 1995, 444, 694 CrossRef CAS.
  6. A. Beghin, T. Stoecklin and J. C. Rayez, Chem. Phys., 1995, 195, 259 CrossRef CAS.
  7. T. Stoecklin, Chem. Phys. Lett., 1995, 237, 516 CrossRef CAS.
  8. I. W. M. Smith, Kinetics and Dynamics of Elementary Gas Reactions, Butterworths, Guildford, 1980 Search PubMed; M. E. Van Steenberg and J. M. Shull, Atrophys. J., 1988, 330, 942 Search PubMed.
  9. E. Herbst, H.-H. Lee, D. A. Howe and T. J. Millar, Mou. Not. R. Astron. Soc., 1994, 268, 335 Search PubMed.
  10. S. D. Le Picard, A. Canosa, D. Travers, D. Chastaing, B. Rowe and T. Stoecklin, J. Phys. Chem., 1997, 101, 9988 Search PubMed.
  11. D. C. Clary, Annu. Rev. Phys. Chem., 1990, 41, 61 CrossRef CAS; D. C. Clary and J. P. Henshaw, J. Chem. Soc., Faraday Trans., 1987, 84, 333 Search PubMed; D. C. Clary, The Theory of Chemical Reaction Dynamics, Reidel, Dordrecht, 1986 Search PubMed.
  12. D. C. Clary, Mol. Phys., 1984, 53, 3 CAS; D. C. Clary, Mol. Phys., 1985, 54, 605 CAS; C. E. Dateo and D. C. Clary, J. Chem. Phys., 1989, 90, 7216 CrossRef CAS.
  13. H. Lefevre-Brion and R. W. Field, in Perturbations in the Spectra of Diatomic Molecules, Academic Press, London, 1986 Search PubMed.
  14. J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, in Molecular Theory of Gases and Liquids, Wiley, New York, 1964, p. 844 Search PubMed.
  15. R. N. Zare, in Angular Momentum, Wiley, New York, 1988 Search PubMed.
  16. W. R. Gentry and C. F. Giese, J. Chem. Phys., 1977, 67, 2355 CrossRef CAS.
  17. M. M. Graff and A. F. Wagner, J. Chem. Phys., 1993, 92, 2423 CrossRef CAS.
  18. C. E. Moore, in Atomic Energy Levels, NBS Circular 467, National Bureau of Standards, Washington, 1949, vol. I Search PubMed.
  19. A. D. Buckingham, Adv. Chem. Phys., 1967, 12, 107 CAS.
  20. J. Rubio, J. M. Ricart and F. Illas, J. Comput. Chem., 1988, 9, 836 CAS.
  21. T. Stoecklin, C. E. Dateo and D. C. Clary, J. Chem. Soc., Faraday Trans., 1991, 87, 1667 RSC.
  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, U. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94(Revision D.1), Gaussian, Inc., Pittsburgh, PA, 1995 Search PubMed.
  23. D. E. Woon and T. H. Dunning Jr., J. Chem. Phys., 1993, 98, 1358 CrossRef CAS; T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007 CrossRef CAS.
  24. P. Milani, I. Moullet and W. A. De Heer, Phys. Rev. A, 1990, 42, 5150 CrossRef CAS.
  25. J. P. Desclaux, Atomic Data and Nuclear Data Tables, 1973, 12, 311 Search PubMed.
  26. Handbook of Chemistry and Physics, ed.-in-chief D. R. Lide, CRC Press, Boca Raton, FL, 76th edn., 1995–1996 Search PubMed.
  27. C. G. Gray and K. E. Gubbins, in The Theory of Molecular Fluids, Clarendon Press, Oxford, 1984 Search PubMed.
  28. T. T. Wilheit Jr. and A. H. Barrett, Phys. Rev., 1970, 1, N.1, 213 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.