Benzene–chloroform association Excess molar enthalpy of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at temperatures from 353.2 to 423.2 K

(Note: The full text of this document is currently only available in the PDF Version )

C. J. Wormald and P. W. Johnson


Abstract

A flow-mixing calorimeter has been used to measure the excess molar enthalpy HmE of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at standard atmospheric pressure over the temperature range 353.2–423.2 K. The non-ideality of the cyclohexane and benzene was fitted using the Kihara potential, and that of the chloroform using the Stockmayer potential. Cross-terms were calculated using the equation ε12=(1-k12)(ε11ε22)1/2 and to fit the measurements on (cyclohexane+chloroform)(g) the value (1-k12)=0.965 was needed. This value was used to calculate HmE for (benzene+chloroform)(g), and the calculated values were found to be positive and to be similar to those for (cyclohexane+chloroform)(g). However, the experimental values are negative, and about 35 J mol-1 below the values for (cyclohexane+chloroform)(g). The difference between the calculated and experimental values was described in terms of a quasi-chemical model that, for the benzene–chloroform interaction, yielded a value of the equilibrium constant K12(298.15 K)=0.373 MPa-1 and an enthalpy of association ΔH12=-(16.1±2) kJ mol-1. This value of ΔH12 is attributed to a charge transfer between the benzene and the chloroform that is not present in the cyclohexane–chloroform interaction.


References

  1. C. J. Wormald, J. Chem. Thermodyn., 1977, 9, 901 CAS.
  2. C. J. Wormald, E. J. Lewis and A. J. Terry, J. Chem. Thermodyn., 1996, 28, 17 CrossRef CAS.
  3. C. J. Wormald, R. W. Hodgetts and G. R. Smith, J. Chem. Thermodyn., 1992, 24, 943 CAS.
  4. C. J. Wormald, N. M. Lancaster and C. J. Sowden, J. Chem. Soc., Faraday Trans., 1997, 93, 1921 RSC.
  5. C. J. Wormald and C. J. Sowden, Int. J. Thermophys., 1997, 18, 1465 CAS.
  6. C. J. Wormald and C. J. Sowden, J. Chem. Thermodyn., 1997, 29, 1223 CrossRef CAS.
  7. C. J. Wormald and J. C. Mayr, J. Chem. Soc., Faraday Trans., 1998, 94, 207 RSC.
  8. C. Mathonat, J. Wilson and C. J. Wormald, J. Chem. Thermodyn., in press Search PubMed.
  9. J. Bowles, M. Lacey, C. Mathonat, C. J. Sowden and C. J. Wormald, J. Chem. Thermodyn., in press Search PubMed.
  10. C. J. Wormald, A. P. Parker and F. Rieger, J. Chem. Thermodyn., in press Search PubMed.
  11. A. P. Parker, P. W. Johnson, F. Rieger and C. J. Wormald, J. Chem. Thermodyn., in press Search PubMed.
  12. J. A. Doyle, D. J. Hutchings, N. M. Lancaster and C. J. Wormald, J. Chem. Thermodyn., 1997, 29, 677 CrossRef CAS.
  13. P. L. Chueh and J. M. Prausnitz, AIChE J., 1967, 13, 896 CAS.
  14. H. Orbey and J. H. Vera, AIChE J., 1983, 29, 107 CAS.
  15. J. A. Doyle, D. J. Hutchings, N. M. Lancaster and C. J. Wormald, J. Chem. Soc., Faraday Trans., 1998, 94, 1263 RSC.
  16. G. H. Hudson and J. C. McCoubrey, Trans. Faraday Soc., 1960, 56, 761 RSC.
  17. C. J. Wormald, E. J. Lewis and D. J. Hutchins, J. Chem. Thermodyn., 1979, 11, 1 CrossRef CAS.
  18. R. Anderson and J. M. Prauznitz, J. Chem. Phys., 1963, 39, 1225 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.