Quenching of NH/ND(b1Σ+) by H2, D2 and N2 at different temperatures and pressures

(Note: The full text of this document is currently only available in the PDF Version )

Ch. Lotz and F. Stuhl


Abstract

The quenching of metastable NH/ND(b1Σ+) radicals by Q=N2, H2 and D2 has been studied using the pulsed VUV photolysis of NH3 for the generation, and the phosphorescence NH/ND(b1Σ+→X3Σ-) for the time resolved detection of NH/ND(b). Quenching rate constants were obtained in the temperature range 200–440 K and pressures of the bath gas N2 or Ar were varied from 0.66 to 30 kPa. The aim of this investigation is to search for the formation of complexes and their stabilization during the quenching process. The rate constants for Q=H2 and D2 suggest that complexes are formed which, however, are not stabilized at Ar pressures up to about 30 kPa. The results will be discussed also with regard to sparse theoretical calculations.


References

  1. U. Blumenstein, F. Rohrer and F. Stuhl, Chem. Phys. Lett., 1984, 107, 347 CrossRef CAS.
  2. C. Zetzsch and F. Stuhl, Ber. Bunsen-Ges. Phys. Chem., 1976, 80, 1354 Search PubMed.
  3. C. Zetzsch, Habilitationsschrift, Ruhr-Universität Bochum, 1977 Search PubMed.
  4. B. Gelernt, S. V. Filseth and T. Carrington, J. Chem. Phys., 1976, 65, 4940 CrossRef CAS.
  5. C. A. van Dijk, S. T. Sandholm, D. D. Davis and J. D. Bradshaw, J. Phys. Chem., 1989, 93, 6363 CrossRef CAS.
  6. C. Zetzsch and F. Stuhl, J. Chem. Phys., 1977, 66, 3107 CrossRef CAS.
  7. F. Rohrer and F. Stuhl, J. Chem. Phys., 1988, 88, 4788 CrossRef CAS.
  8. A. Gilles, J. Masanet and C. Vermeil, Chem. Phys. Lett., 1974, 25, 346 CAS.
  9. M. Suto and L. C. Lee, J. Chem. Phys., 1983, 78, 4515 CrossRef CAS.
  10. C. J. Apps, M. J. Bramwell, J. L. Cooper, J. C. Whitehead and F. Winterbottom, Mol. Phys., 1994, 83, 1265 CAS.
  11. H. Sato, Photodissociation of Simple Molecules in the Gas Phase, Bunshin, Tokyo, 1992 and supplements (up to supplement X) Search PubMed.
  12. U. Meier and V. Staemmler, J. Phys. Chem., 1991, 95, 6111 CrossRef CAS.
  13. U. Mänz, P. Rosmus, H.-J. Werner and P. Botschwina, Chem. Phys., 1988, 122, 387 CrossRef and references therein.
  14. U. Mänz, E.-A. Reinsch, P. Rosmus, H.-J. Werner and S. O. Neil, J. Chem. Soc., Faraday Trans., 1991, 87, 1809 RSC.
  15. R. N. Dixon, Chem. Soc. Rev., 1994, 23, 375 RSC.
  16. St. Höser, U. Blumenstein, F. Stuhl and M. Olzmann, J. Chem. Soc., Faraday Trans., 1997, 93, 2029 RSC.
  17. C. M. Marian and R. Klotz, Chem. Phys., 1985, 95, 213 CrossRef CAS.
  18. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley, NY, 1972 Search PubMed; W. Forst, Theory of Unimolecular Reactions, Academic Press, NY, 1973 Search PubMed.
  19. J. W. Cox, H. H. Nelson and J. R. McDonald, Chem. Phys., 1985, 96, 175 CrossRef CAS.
  20. K. Yunoki, A. Tezaki, K. Yokoyama and H. Matsui, Bull. Chem. Soc. Jpn., 1996, 96, 1195.
  21. P. Heinrich and F. Stuhl, Chem. Phys., 1995, 199, 297 CrossRef CAS.
  22. E. L. Chappell, J. B. Jeffries and D. R. Crosley, J. Chem. Phys., 1992, 97, 2400 CrossRef CAS.
  23. R. D. Kenner, F. Rohrer and F. Stuhl, J. Phys. Chem., 1989, 93, 7824 CrossRef CAS.
  24. Note that ref. 28 in this Table 1 has to be replaced by ref. 14 and 29 by 28.
Click here to see how this site uses Cookies. View our privacy policy here.