Photoelectric conversion from a nitrobenzene dye monolayer modified ITO electrode

(Note: The full text of this document is currently only available in the PDF Version )

Deng-Guo Wu, Yan-Yi Huang, Chun-Hui Huang and Liang-Bing Gan


Abstract

An amphiphilic nitrobenzene dye (C18H37)2N–C6H4–CH[double bond, length as m-dash]N–NH–C6H4–NO2 has been synthesized and deposited on semiconducting transparent indium–tin oxide (ITO) electrodes by a Langmuir–Blodgett (LB) technique. Photocurrent generation was studied in a conventional photoelectrochemical cell. An action spectrum of the photocurrent generation is coincident with the absorption spectrum of the LB film-modified electrode, indicating that the dye aggregate in the LB film is responsible for the photocurrent. Some factors which may affect the observed photocurrent, such as the presence of O2, the concentration of methyl violet (MV2+), and hydroquinone (H2Q), pH and the bias voltage have been investigated. Models for the mechanism of photocurrent generation under different conditions are proposed.


References

  1. K. Y. Law, Chem. Rev., 1993, 93, 449 CrossRef CAS.
  2. G. J. Ashwell, G. Jefferies, D. G. Hamilton, D. E. Lynch, M. P. S. Roberts, G. S. Bahra and C. R. Brown, Nature (London), 1995, 375, 385 CrossRef CAS.
  3. W. S. Xia, C. H. Huang, L. B. Gan and H. Li, J. Chem. Soc., Faraday Trans., 1996, 92, 3131 RSC.
  4. W. S. Xia, C. H. Huang and D. J. Zhou, Langmuir, 1997, 13, 80 CrossRef CAS.
  5. W. S. Xia, C. H. Huang, X. Z. Ye, C. P. Luo, L. B. Gan and Z. F. Liu, J. Phys. Chem., 1996, 100, 2244 CrossRef CAS.
  6. W. S. Xia, C. H. Huang, L. B. Gan, H. Li and X. S. Zhao, J. Chem. Soc., Faraday Trans., 1996, 92, 769 RSC.
  7. Organic Materials for Nonlinear Optics III ed. G. J. Ashwell and D. Bloor, Royal Society of Chemistry, Cambridge, 1993 Search PubMed.
  8. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991 Search PubMed.
  9. S. Neśpůrek, Int. J. Electron., 1994, 76, 777 CAS.
  10. S. Allen, in Molecular Electronics, ed. G. J. Ashwell, Research Studies, Taunton, 1992, pp. 207–265 Search PubMed.
  11. C. Bubeck, A. Laschewsky, D. Lupo, D. Neher, P. Ottenbreit, W. Paulus, W. Prass, H. Ringsdorf and G. Wegner, Adv. Mater., 1991, 3, 54 CrossRef CAS.
  12. A. Haraguchi, Y. Yonezawa and R. Hanawa, Photochem. Photobiol., 1990, 52, 307 CAS.
  13. Y. Li and S. Dong, J. Electroanal. Chem., 1993, 348, 181 CrossRef CAS.
  14. (a) H. Hada and Y. Yonezawa, Synth. Met., 1987, 18, 791 CAS; (b) H. Hada, Y. Yonezawa and H. Inaba, Ber. Bunsen-Ges. Phys. Chem., 1981, 85, 425 Search PubMed.
  15. (a) N. S. Bayliss and E. G. Mcrae, J. Phys. Chem., 1954, 58, 1002 CrossRef CAS; (b) G. J. Brealey and M. Kasha, J. Am. Chem. Soc., 1955, 77, 4462 CrossRef CAS.
  16. L. Sereno, J. J. Silber, L. Otero, M. D. V. Bohorquez, A. L. Moore, T. A. Moore and D. Gust., J. Phys. Chem., 1996, 100, 814 CrossRef CAS.
  17. Y. S. Kim, K. Liang, K. Y. Law and D. G. Whitten, J. Phys. Chem., 1994, 98, 984 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.