Chiral induction in nematics A computer simulation study

(Note: The full text of this document is currently only available in the PDF Version )

Roberto Berardi, Hans-Georg Kuball, Reiner Memmer and Claudio Zannoni


Abstract

We have studied chiral induction in a nematic in contact with a chiral surface using computer simulations. Nematic and surface particles have been modelled using the Gay–Berne (GB) potential considering, additionally, a short-range chiral term for the inducing surface. We find that, close to the chiral surface, a twist of the local director with respect to the surface molecules is induced, even in the isotropic phase. In the nematic phase, the twist is maintained through orientational correlation and, even well inside, the sample molecules are effectively twisted with respect to the surface director. This process can highlight the basic mechanism of the chiral induction of a cholesteric, i.e. chiral nematic, phase. A detailed description of the molecular organization at various distances from the inducing surface is presented, using scalar and pseudoscalar orientational correlation functions.


References

  1. G. Friedel, Ann. Phys. (Paris), 1922, 18, 273 Search PubMed.
  2. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 2nd edn., 1993, ch. 6 Search PubMed.
  3. L. D. Hayward and R. N. Totty, Can. J. Chem., 1971, 49, 624 CAS.
  4. G. Briegleb, H.-G. Kuball, K. Henschel and W. Euing, Ber. Bunsen-Ges. Phys. Chem., 1972, 76, 101 Search PubMed.
  5. H.-G. Kuball, B. Weiβ, A. K. Beck and D. Seebach, Helv. Chim. Acta, 1997, 80, 2507 CAS.
  6. W. J. A. Goossens, Mol. Cryst. Liq. Cryst., 1971, 12, 237 CAS.
  7. B. W. van der Meer, G. Vertogen, A. J. Dekker and J. G. J. Ypma, J. Chem. Phys., 1976, 65, 3935 CrossRef CAS.
  8. H.-G. Kuball and H. Brüning, Chirality, 1997, 9, 407 CrossRef CAS.
  9. J. G. Gay and B. J. Berne, J. Chem. Phys., 1981, 74, 3316 CrossRef CAS.
  10. R. Berardi, A. P. J. Emerson and C. Zannoni, J. Chem. Soc., Faraday Trans., 1993, 89, 4069 RSC.
  11. D. J. Adams, G. R. Luckhurst and R. W. Phippen, Mol. Phys., 1987, 61, 1575 CAS.
  12. M. K. Chalam, K. E. Gubbins, E. de Miguel and L. F. Rull, Mol. Simul., 1991, 7, 357 Search PubMed.
  13. E. de Miguel, L. F. Rull, M. K. Chalam, K. E. Gubbins and F. van Swol, Mol. Phys., 1991, 72, 593.
  14. M. P. Allen and M. A. Warren, Phys. Rev. Lett., 1997, 78, 1291 CrossRef CAS.
  15. C. Zannoni, in The Molecular Physics of Liquid Crystals, ed. G. R. Luckhurst and G. W. Gray, Academic Press, London, 1979, ch. 9 Search PubMed.
  16. R. Memmer, H.-G. Kuball and A. Schönhofer, Liq. Cryst., 1993, 15, 345 CAS.
  17. A. J. Stone, Mol. Phys., 1978, 36, 241 CAS.
  18. J. A. Barker and R. O. Watts, Chem. Phys. Lett., 1969, 3, 144 CrossRef CAS.
  19. M. P. Allen and A. J. Masters, Mol. Phys., 1993, 79, 277 CAS.
  20. M. P. Allen, Phys. Rev. E, 1993, 47, 4611 CrossRef CAS.
  21. R. Memmer, H.-G. Kuball and A. Schönhofer, Ber. Bunsen-Ges. Phys. Chem., 1993, 97, 1193 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.