Thermodynamics of the interaction of some chloro- and fluoro-substituted alcohols with bovine α-lactalbumin

(Note: The full text of this document is currently only available in the PDF Version )

Nand Kishore and Baby Sabulal


Abstract

The temperature dependence of the excess heat capacity and evaluation of thermodynamic parameters of bovine α-lactalbumin has been studied by high-sensitivity micro differential scanning calorimetry in the presence of 4-chlorobutan-1-ol, n-butanol, 3-chloropropan-1-ol, 3-chloropropan-1,2-diol, propan-1,2-diol, n-propanol, 2,2,2-trifluoroethanol, and ethanol at neutral pH. The chlorosubstituted alcohols are observed to be more effective destabilisers of α-lactalbumin compared with their normal alcohols in the order: 4-chlorobutan-1-ol > n-butanol > 3-chloropropan-1-ol > n-propanol > 2,2,2-trifluoroethanol > 3-chloropropan-1,2-diol > ethanol > propan-1,2-diol. A reversible two-state approximation for the unfolding of the protein has been shown in the absence and presence of these alcohols. A second, smaller, endothermic transition, 23°C beyond the main endotherm was observed only in the presence of 0.125 to 0.250 mol dm-3 3-chloropropan-1-ol. Concentrations higher than 25 mmol dm-3 4-chlorobutan-1-ol resulted in total loss of an observable endotherm. Thermal destabilisation of the protein in these solvent systems is explained on the basis of competing patterns of interactions of the cosolutes with the native versus unfolded states of the protein during the nativedenatured reaction. These results are supported by intrinsic fluorescence, energy transfer and UV difference measurements.


References

  1. K. Kuwajima, Proteins: Struct. Funct. Genet., 1989, 6, 87 Search PubMed.
  2. O. Ptitsyn, in Protein Folding, ed. T. E. Creighton, Freeman, New York, 1992p. 243 Search PubMed.
  3. M. Buck, S. E. Radford and C. M. Dobson, Biochemistry, 1993, 32, 669 CrossRef CAS.
  4. A. T. Alexandrescu, Y.-L. Ng and C. M. Dobson, J. Mol. Biol., 1994, 235, 587 CrossRef CAS.
  5. P. L. Privalov, J. Mol. Biol., 1996, 258, 707 CrossRef CAS.
  6. D. Hamada and Y. Goto, J. Mol. Biol., 1997, 269, 479 CrossRef CAS.
  7. C. Redfield, R. A. G. Smith and C. M. Dobson, Nature: Struct. Biol., 1994, 1, 23 Search PubMed.
  8. Y. Pan and M. S. Briggs, Biochemistry, 1992, 31, 11405 CrossRef CAS.
  9. S.-I. Segawa, T. Fukono, K. Fujiwara and Y. Noda, Biopolymers, 1991, 31, 497 CAS.
  10. D. Hamada, Y. Kuroda, T. Tanaka and Y. Goto, J. Mol. Biol., 1995, 254, 737 CrossRef CAS.
  11. Y. Kuroda, D. Hamada, T. Tanaka and Y. Goto, Folding Des., 1996, 1, 243 Search PubMed.
  12. F. D. Sonnichsen, J. E. Van Eyk, R. S. Hodges and B. D. Sykes, Biochemistry, 1992, 31, 8790 CrossRef CAS.
  13. B. Sabulal and N. Kishore, J. Chem. Soc., Faraday Trans., 1996, 92, 1905 RSC.
  14. D. Xie, V. Bhakuni and E. Friere, Biochemistry, 1991, 30, 10673 CrossRef CAS.
  15. M. J. Kronman and R. E. Andreotti, Biochemistry, 1964, 3, 1145 CrossRef CAS.
  16. W. H. Kirchhoff, EXAM, US Department of Energy, Thermodynamics Division, National Institute of standards and Technology, Gaithersburg, MD, USA.
  17. F. P. Schwarz and W. H. Kirchhoff, Thermochim. Acta, 1988, 128, 267 CrossRef CAS.
  18. J. F. Brandts, C. Q. Hu, L.-N. Lin and M. T. Mas, Biochemistry, 1989, 28, 8588 CrossRef CAS.
  19. Y. V. Griko, E. Friere and P. L. Privalov, Biochemistry, 1994, 33, 1889 CrossRef CAS.
  20. Y. Kita, T. Arakawa, T. Y. Lin and S. N. Timasheff, Biochemistry, 1994, 33, 15178 CrossRef CAS.
  21. T. Y. Lin and S. N. Timasheff, Biochemistry, 1994, 33, 12 695 CrossRef CAS.
  22. S. N. Timasheff, Biochemistry, 1994, 31, 9857.
  23. F. Franks and D. J. G. Ives, Q. Rev. Chem. Soc., 1965, 20, 1 RSC.
  24. F. Franks and D. Egland, CRC Crit. Rev. Biochem., 1975, 3, 165 Search PubMed.
  25. H. Inuoe and S. N. Timasheff, Biopolymers, 1972, 11, 737 CrossRef.
  26. Y. Fujita and Y. Noda, Bull Chem. Soc. Jpn., 1984, 57, 2177 CAS.
  27. K. Gekko and S. N. Timasheff, Biochemistry, 1981, 20, 4667 CrossRef CAS.
  28. K. R. Acharya, D. I. Stuart, N. P. C. Walker, M. Lewis and D. C. Philips, J. Mol. Biol., 1989, 208, 99 CrossRef CAS.
  29. I. Hanssens, C. Houthuys, W. Herreman and F. H. Van Cauwelaert, Biochim. Biophys. Acta, 1980, 602, 539 CrossRef CAS.
  30. K. Kuwajima, Proteins, 1989, 6, 87 CAS.
  31. T. T. Herskovits, B. Gadegbeku and H. Jailet, J. Biol. Chem., 1970, 245, 2588 CAS.
  32. T. T. Herskovits, Meth. Enzymol, 1967, 11, 748 Search PubMed.
  33. T. T. Herskovits, J. Biol. Chem., 1965, 240, 628 CAS.
  34. G. Velicelebi and J. M. Sturtevant, Biochemistry, 1979, 18, 1180 CrossRef CAS.
  35. Y. Fujita, A. Miyanaga and Y. Noda, Bull Chem. Soc. Jpn., 1979, 52, 3659 CAS.
  36. P. L. Privalov, in Water in Biological Systems, ed. L. P. Kayushin, Consultants Bureau, New York, 1969, p. 38 Search PubMed.
  37. M. M. Harding, D. H. Williams and D. N. Woolfson, Biochemistry, 1991, 20, 3120 CrossRef.
  38. J. W. Nelson and N. R. Kallenbach, Proteins: Struct. Funct. Genet., 1986, 1, 211 Search PubMed.
  39. Y. Liu and J. M. Sturtevant, Biochemistry, 1996, 35, 3059 CrossRef CAS.
  40. M. M. Santoro, Y. Liu, S. M. A. Khan, L.-X. Hou and B. W. Bolen, Biochemistry, 1992, 31, 5278 CrossRef CAS.
  41. H. A. McKenzie and F. H. White Jr., Adv. Protein Chem., 1991, 41, 173 Search PubMed.
  42. K. Harata and M. Muraki, J. Biol. Chem., 1992, 267, 1419 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.