Scanning electrochemical microscopy Kinetics of chemical reactions following electron-transfer measured with the substrate-generation–tip-collection mode

(Note: The full text of this document is currently only available in the PDF Version )

Rachel D. Martin and Patrick. R. Unwin


Abstract

The substrate-generation–tip-collection (SG–TC) mode of the scanning electrochemical microscope (SECM) is used as a new approach to investigate the kinetics of EC processes. Under the conditions of interest, a species O is generated at a macroscopic substrate (generator) electrode, with potential-step control, through the diffusion-limited electrolysis of a solution species R (E step). As O diffuses away from the generator, it undergoes a first order chemical reaction in solution (C step). A fraction of O is collected by electrolysis back to R at an externally biased ultramicroelectrode (UME), positioned directly over the substrate. This promotes the diffusional feedback of R to the substrate. Theory for the problem, relating the time-dependent tip current response to the rate constant for the C step and the tip–substrate electrode separation is developed numerically. Results of the calculations illustrate how the characteristic features of the tip current transients: peak current, peak time and post-half-peak time, depend on the kinetics of the C step and the inter-electrode separation. It is shown that both the kinetics and tip–substrate separation can be determined independently from a single transient by simply measuring the peak current and peak time. The theoretical results are validated experimentally through model studies of the oxidative deamination of N,N,-dimethyl-p-phenylenediamine (DMPPD) in aqueous solution at high pH. The effective second-order rate constant for the deamination step is in excellent agreement with values measured by alternative methods.


References

  1. A. J. Bard, F. R. F. Fan, J. Kwak and O. Lev, Anal. Chem., 1989, 61, 132 CrossRef CAS.
  2. A. J. Bard, F. R. F. Fan, D. T. Pierce, P. R. Unwin, D. O. Wipf and F. Zhou, Science, 1991, 254, 68 CrossRef CAS.
  3. (a) For recent reviews see e.g.A. J. Bard, M. V. Mirkin and F.-R. F. Fan, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1993, vol. 18, p. 243 Search PubMed; (b) M. Arca, A. J. Bard, B. R. Horrocks, T. C. Richards and D. A. Treichel, Analyst, 1994, 119, 719 RSC; (c) J. V. Macpherson and P. R. Unwin, Chem. Ind., 1995, 874; (d) M. V. Mirkin, Anal. Chem., 1996, 68, 177A.
  4. P. R. Unwin and A. J. Bard, J. Phys. Chem., 1991, 95, 7814 CrossRef CAS.
  5. F. Zhou, P. R. Unwin and A. J. Bard, J. Phys. Chem., 1992, 96, 4917 CrossRef CAS.
  6. C. Demaille, P. R. Unwin and A. J. Bard, J. Phys. Chem., 1996, 100, 14137 CrossRef CAS.
  7. T. C. Richards, A. J. Bard, A. Cusanelli and D. Sutton, Organometallics, 1994, 13, 757 CrossRef CAS.
  8. D. A. Treichel, M. V. Mirkin and A. J. Bard, J. Phys. Chem., 1994, 98, 5751 CrossRef CAS.
  9. F. Zhou and A. J. Bard, J. Am. Chem. Soc., 1994, 116, 393 CrossRef CAS.
  10. C. Lee, J. Kwak and F. C. Anson, Anal. Chem., 1991, 63, 1501 CrossRef CAS.
  11. C. Wei, A. J. Bard, G. Nagy and K. Toth, Anal. Chem., 1995, 67, 1346 CrossRef CAS.
  12. R. C. Engstrom, M. Weber, D. J. Wunder, R. Burgess and S. Winquist, Anal. Chem., 1986, 58, 844 CrossRef CAS.
  13. R. C. Engstrom, T. Meaney, R. Tople and R. M. Wightman, Anal. Chem., 1987, 59, 2005 CrossRef CAS.
  14. M. V. Mirkin, H. Yang and A. J. Bard, J. Electrochem. Soc., 1992, 139, 2212 CAS.
  15. R. D. Martin and P. R. Unwin, Anal. Chem., 1998, 70, 276 CrossRef CAS.
  16. R. D. Martin and P. R. Unwin, J. Electroanal. Chem., 1997, 439, 123 CrossRef CAS.
  17. D. W. Peaceman and H. H. Rachford, J. Soc. Ind. Appl. Math., 1955, 3, 28 Search PubMed.
  18. L. Lapidus and G. F. Pinder, Numerical Solutions of Partial Differential Equations, Wiley, New York, 1977 Search PubMed.
  19. See e.g. (a) P. R. Unwin and A. J. Bard, J. Phys. Chem., 1992, 96, 5035 CrossRef CAS; (b) D. T. Pierce, P. R. Unwin and A. J. Bard, Anal. Chem., 1992, 64, 1795 CrossRef CAS; (c) J. V. Macpherson and P. R. Unwin, J. Phys. Chem., 1994, 98, 1704 CrossRef CAS; (d) J. V. Macpherson and P. R. Unwin, J. Phys. Chem., 1994, 98, 11764 CrossRef CAS; (e) J. V. Macpherson and P. R. Unwin, J. Phys. Chem., 1995, 99, 3338 CrossRef CAS; (f) J. V. Macpherson and P. R. Unwin, J. Phys. Chem., 1995, 99, 14824 CrossRef CAS; (g) J. V. Macpherson and P. R. Unwin, J. Phys. Chem., 1996, 100, 19475 CrossRef CAS; (h) J. V. Macpherson, C. J. Slevin and P. R. Unwin, J. Chem. Soc., Faraday Trans., 1996, 92, 3799 RSC; (i) J. V. Macpherson, D. O'Hare, P. R. Unwin and C. P. Winlove, Biophys. J., 1997, 73, 2771 CAS.
  20. C. J. Slevin, J. V. Macpherson and P. R. Unwin, J. Phys. Chem. B, 1997, 101, 10851 CrossRef CAS.
  21. A. L. Barker, J. V. Macpherson, C. J. Slevin and P. R. Unwin, J. Phys. Chem. B, in press Search PubMed.
  22. L. K. J. Tong, J. Phys. Chem., 1954, 58, 1090 CrossRef CAS.
  23. L. K. J. Tong, K. Liang and W. R. Ruby, J. Electroanal. Chem., 1967, 13, 245 CrossRef CAS.
  24. K. Aoki and H. Matsuda, J. Electroanal. Chem., 1978, 94, 157 CrossRef CAS.
  25. J. Kwak and A. J. Bard, Anal. Chem., 1989, 61, 1221 CrossRef CAS.
  26. Y. Saito, Rev. Polarogr. Jpn., 1968, 15, 177 Search PubMed.
  27. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.