Formation and relaxation of O2(X3Σg-) in high vibrational levels (18⩽⩽23) in the photolysis of O3 at 266 nm

(Note: The full text of this document is currently only available in the PDF Version )

Kevin M. Hickson, Paul Sharkey, Ian W. M. Smith, Andrew C. Symonds, Richard P. Tuckett and Gary N. Ward


Abstract

Using pulsed laser photolysis (PLP) and laser-induced fluorescence (LIF) we have studied the formation of O2(X3Σg-) in high vibrational levels when O3 is photolysed at 266 nm. Experiments have been performed in both Ar and N2 diluents. In the former, O2(X3Σg-) in high vibrational levels is formed primarily as a product of the reaction between O(1D) atoms and O3: O(1D)+O3→2 O2(X3Σg-, v). In a large excess of N2, the O(1D) atoms are quenched and one only observes the O2(X3Σg-) molecules created by direct photolysis in the ‘triplet channel’: O3+hν (λ=266 nm)→O2(X3Σg-, v)+O(3P). Employing LIF in the (0, v) and (2, v) bands of the O2 (B 3Σu-–X3Σg-) system, we have characterised the nascent vibrational distributions from both these processes for 18⩽v⩽23. In addition, by observing how the population in specific vibrational levels changes with time, we have determined rate constants for vibrational relaxation of O2(X3Σg-, v=21 and 22) with He, O2, N2, CO2, N2O and CH4. The results are compared with those obtained in other studies for relaxation from the same and other levels of O2(X3Σg-) and the implications of the results for atmospheric chemistry are discussed.


References

  1. T. G. Slanger, L. E. Jusinski, G. Black and G. E. Gadd, Science, 1988, 241, 945 CAS.
  2. (a) R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, M. J. Rossi and J. Troe, Phys. Chem. Ref. Data, 1997, 26, 521 Search PubMed; (b) W. B. Demore, S. P. Sander, D. M. Golden, R. F. Hampson Jr., M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb and M. J. Molina, Chemical and Photochemical Data for Use in Stratospheric Modeling Evaluation Number 11, NASA JPL-Publication 97-4, 1997 Search PubMed.
  3. (a) L. Froidevaux, M. Allen and Y. L. Yung, J. Geophys. Res., 1985, 90, 12999; (b) R. T. Clancy, D. W. Rusch, R. J. Thomas, M. Allen and R. S. Eckman, J. Geophys. Res., 1987, 92, 3067 CAS.
  4. NASA Reference Publication 1292, vol. II, The Atmospheric Effects of Stratospheric Aircraft: Report of the 1992 Models and Measurements Workshops, March 1993 Search PubMed.
  5. Atmospheric Ozone Report, no. 16, W.M.O., Geneva, 1986 Search PubMed.
  6. C. A. Rogaski, J. A. Mack and A. M. Wodtke, Faraday Discuss., 1995, 100, 229 RSC.
  7. R. Toumi, B. J. Kerridge and J. A. Pyle, Nature (London), 1991, 351, 217 CAS.
  8. (a) D. Rapp and P. Englander-Golden, J. Chem. Phys., 1964, 40, 573 CAS; (b) D. Rapp, J. Chem. Phys., 1965, 43, 316 CAS; (c) D. Rapp and T. A. Kassal, Chem. Rev., 1969, 69, 61 CrossRef CAS.
  9. (a) H. Park and T. G. Slanger, J. Chem. Phys., 1994, 100, 287 CrossRef CAS; (b) T. G. Slanger and R. A. Copeland, in Advances in Chemical Kinetics and Dynamics, ed. J. R. Barker, JAI Press, 1994, vol. 2 Search PubMed.
  10. J. M. Price, J. A. Mack, C. A. Rogaski and A. M. Wodtke, Chem. Phys., 1993, 175, 83 CrossRef CAS.
  11. J. A. Mack, K. Mikulecky and A. M. Wodtke, J. Chem. Phys., 1996, 105, 4105 CrossRef CAS.
  12. (a) M. Klatt, I. W. M. Smith, R. P. Tuckett and G. N. Ward, Chem. Phys. Lett., 1994, 224, 253 CrossRef CAS; (b) M. Klatt, I. W. M. Smith, A. C. Symonds, R. P. Tuckett and G. N. Ward, J. Chem. Soc., Faraday Trans., 1996, 92, 193 RSC.
  13. G. D. Billing and R. E. Kolesnick, Chem. Phys. Lett., 1992, 200, 382 CrossRef CAS.
  14. R. Hernandez, R. Toumi and D. C. Clary, J. Chem. Phys., 1995, 102, 9544 CrossRef CAS.
  15. I. W. M. Smith, R. P. Tuckett and C. J. Whitham, Chem. Phys. Lett., 1992, 200, 615 CrossRef CAS.
  16. (a) W. D. McGrath and R. G. W. Norrish, Proc. R. Soc., 1957, 242, 265 Search PubMed; (b) W. D. McGrath and R. G. W. Norrish, Proc. R. Soc., 1960, 254, 317 Search PubMed.
  17. (a) R. V. Fitzsimmons and E. J. Bair, J. Chem. Phys., 1964, 40, 451 CAS; (b) V. D. Baiamonte, L. G. Hartshorn and E. J. Bair, J. Chem. Phys., 1971, 55, 3617 CAS.
  18. (a) C. B. Cleveland and J. R. Wiesenfeld, J. Chem. Phys., 1988, 89, 6549 CrossRef CAS; (b) M. J. Daniels and J. R. Wiesenfeld, J. Chem. Phys., 1993, 98, 321 CrossRef CAS.
  19. T. Kinugawa, T. Sato, T. Arikawa, Y. Matsumi and M. Kawasaki, J. Chem. Phys., 1990, 93, 3289 CrossRef CAS.
  20. (a) C. E. Fairchild, E. J. Stone and G. M. Lawrence, J. Chem. Phys., 1978, 69, 3632 CrossRef CAS; (b) R. K. Sparks, L. R. Carlson, K. Shobatake, M. L. Kowalczyk and Y. T. Lee, J. Chem. Phys., 1980, 72, 1401 CrossRef CAS.
  21. R. L. Miller, A. G. Suits, P. L. Houston, R. Toumi, J. A. Mack and A. M. Wodtke, Science, 1994, 264, 1831.
  22. (a) P. S. Julienne and M. Krauss, J. Mol. Spectrosc., 1975, 56, 270 CrossRef CAS; (b) P. S. Julienne, J. Mol. Spectrosc., 1976, 63, 60 CAS; (c) P. C. Cosby, H. Park, R. A. Copeland and T. G. Slanger, J. Chem. Phys., 1993, 98, 5117 CrossRef CAS.
  23. P. H. Krupenie, J. Phys. Chem. Ref. Data, 1972, 1, 423 CAS.
  24. R. J. LeRoy, University of Waterloo Chem. Phys. Res. Rep. CP-110, 1978 Search PubMed.
  25. R. S. Friedman, J. Quant. Spectrosc. Radiat. Transfer, 1990, 43, 225 CrossRef CAS.
  26. A. S.-C. Cheung, D. K.-W. Mok, Y. Sun and D. E. Freeman, J. Mol. Spectrosc., 1994, 163, 9 CrossRef CAS.
  27. P. L. Houston, personal communication.
  28. S. T. Amimoto, A. P. Force and J. R. Wiesenfeld, Chem. Phys. Lett., 1978, 60, 40 CrossRef CAS.
  29. (a) R. C. Millikan and D. R. White, J. Chem. Phys., 1963, 39, 3209 CAS; (b) D. J. Miller and R. C. Millikan, J. Chem. Phys., 1970, 53, 3384 CAS.
  30. J. T. Yardley, Introduction to Molecular Energy Transfer, Academic Press, New York, 1980 Search PubMed.
  31. (a) R. D. Sharma, Phys. Rev., 1969, 177, 439 Search PubMed; (b) C. A. Brau and R. D. Sharma, J. Chem. Phys., 1969, 50, 924 CrossRef.
  32. J. A. Mack, Y. Huang, A. M. Wodtke and G. C. Schatz, J. Chem. Phys., 1996, 105, 495.
Click here to see how this site uses Cookies. View our privacy policy here.