Mechanistic aspects of anisotropic dissolution of materials Etching of single-crystal silicon in alkaline solutions

(Note: The full text of this document is currently only available in the PDF Version )

Theo Baum and David J. Schiffrin


Abstract

The origin of chemical anisotropy in the dissolution of single-crystal silicon in alkaline solutions is discussed in terms of the atomic configuration of silicon in the pentacoordinated transition state for (100) and (111) surfaces. It is proposed that tetravalent silicon, which is bonded in a tetrahedral geometry, is attacked in the etch process by the hydroxide ion, forming a pentacoordinated transition state. Owing to the number of bond angles that are fixed by the atomic arrangement at the surface, the energetically favoured trigonal bipyramidal geometry for a pentacoordinated complex is only slightly distorted for the former plane but significantly distorted for the latter, resulting in a higher activation energy for the dissolution of (111) surfaces. The difference in the activation energies for the dissolution of Si(100) and (111) surfaces, arising from steric hindrance in the transition state, can be estimated from the activation energy for a pseudo-rotation of a similar system.


References

  1. C. Burrer, J. Esteve and E. Lora-Tamayo, J. Microelectromech. Syst., 1996, 5, 122 CrossRef CAS.
  2. T. A. Kwa, P. J. French, R. F. Wolffenbuttel, P. M. Sarro, L. Hellemans and J. J. Snauwaert, J. Electrochem. Soc., 1995, 142, 1226 CAS.
  3. S. S. Lee, P. P. Ried and R. M. White, J. Microelectromech. Syst., 1996, 5, 239.
  4. S. A. Campbell, D. J. Schiffrin and D. J. Tufton, J. Electroanal. Chem., 1993, 344, 211 CrossRef CAS.
  5. J. Rappich, H. J. Lewerenz and H. Gerischer, J. Electrochem. Soc., 1993, 140, L187 CAS.
  6. P. Allongue, V. Costa-Kieling and H. Gerischer, J. Electrochem. Soc., 1993, 140, 1009 CAS.
  7. P. M. M. C. Bressers, S. A. S. P. Pagano and J. J. Kelly, J. Electrochem. Soc., 1995, 391, 159 CrossRef CAS.
  8. E. D. Palik, V. M. Bermdez and O. J. Glembocki, J. Electrochem. Soc., 1985, 132, 871 CAS.
  9. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgärtel, J. Electrochem. Soc., 1990, 137, 3612 CAS.
  10. P. Jacob, Y. J. Chabal, K. Raghavachari, R. S. Becker and A. J. Becker, Surf. Sci., 1992, 274, 407 CrossRef CAS.
  11. G. S. Higashi, Y. J. Chabal, G. W. Trucks and K. Raghavachari, Appl. Phys. Lett., 1990, 56, 656 CrossRef CAS.
  12. P. Jacob and Y. J. Chabal, J. Chem. Phys., 1991, 95, 2897 CrossRef CAS.
  13. P. Allongue, V. Costa-Kieling and H. Gerischer, J. Electrochem. Soc., 1993, 140, 1018 CAS.
  14. E. Saker and A. Yelon, Phys. Rev. Lett., 1991, 66, 1647 CrossRef CAS.
  15. J. S. Blackmore, Solid State Physics, Cambridge University Press, Cambridge, 2nd edn., 1993, p. 24 Search PubMed.
  16. T. Taketsugu and M. S. Gordon, J. Phys. Chem., 1995, 99, 14597 CrossRef CAS.
  17. F. A. Carey and J. Sundberg, Advanced Organic Chemistry, Plenum Press, New York, 3rd edn., 1990 Search PubMed.
  18. K. P. C. Vollhardt, Organic Chemistry, Freeman, New York, 1st edn., 1987, p. 196 Search PubMed.
  19. L. S. Bartell and K. W. Hansen, Inorg. Chem., 1995, 4, 1777.
  20. R. S. Berry, J. Chem. Phys., 1960, 32, 933 CrossRef CAS.
  21. F. Carré, R. J. P. Corriu, A. Kpoton, M. Poirier, G. Royo and J. C. Young, J. Organomet. Chem., 1994, 470, 43 CrossRef CAS.
  22. M. S. Gordon, T. L. Windus, L. W. Burggraf and L. P. Davis, J. Am. Chem. Soc., 1994, 112, 7167.
  23. T. L. Windus, M. S. Gordon, L. P. Davis and L. W. Burggraf, J. Am. Chem. Soc., 1994, 116, 3568 CrossRef CAS.
  24. G. W. Trucks, K. Raghavachari, G. S. Higashi and Y. J. Chabal, Phys. Rev. Lett., 1990, 65, 504 CrossRef CAS.
  25. K. D. Dobbs and D. J. Doren, J. Am. Chem. Soc., 1993, 115, 3731 CrossRef CAS.
  26. A. L. Allred, J. Inorg. Nucl. Chem., 1961, 17, 215 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.