LCAO-LDA Study of the chemisorption of formate on Cu(110) and Ag(110) surfaces

(Note: The full text of this document is currently only available in the PDF Version )

Maurizio Casarin, Chiara Maccato and Andrea Vittadini


Abstract

The coordination of formate on the Cu(110) and Ag(110) surfaces has been investigated by coupling density functional theory to the molecular-cluster approach. Two adsorption sites, the bidentate bridging (BB) and the bidentate chelating (BC), have been considered for both surfaces. In the BB arrangement, the HCOO oxygen atoms bridge two adjacent metal (M) atoms in the (1[1 with combining macron]0) direction, while in the BC form they chelate a single M atom. Adsorption energies, optimized geometries and vibrational frequencies of the surface HCOO at the BB and BC sites have been computed. Furthermore, the molecular orbitals involved in the adsorbate–substrate interaction have been identified. Independently of the chemisorption site geometry, the HCOO–Cu(110) bond is computed to be stronger and more covalent than that of HCOO–Ag(110). Total energy calculations indicate that the BB coordination site of the Cu(110) surface is favoured with respect to that of BC by ca. 1.0 eV. Despite the nearest neighbour Ag–Ag internuclear distance being longer than that of Cu–Cu, theoretical results pertaining to HCOO on Ag(110) again indicate that the BB site is more stable than that of BC by ca. 0.7 eV.


References

  1. B. A. Sexton, Surf. Sci., 1979, 88, 319 CrossRef CAS.
  2. M. Bowker and R. J. Madix, Surf. Sci., 1981, 102, 542 CrossRef CAS.
  3. B. E. Hayden, K. Prince, D. P. Woodruff and A. M. Bradshaw, Surf. Sci., 1983, 133, 589 CrossRef CAS.
  4. M. Bowker, S. Haq, R. Holroyd, P. M. Parlett, S. Poulston and N. Richardson, J. Chem. Soc., Faraday Trans., 1996, 92, 4683 RSC.
  5. D. A. Outka, R. J. Madix and J. Stöhr, Surf. Sci., 1985, 164, 235 CrossRef CAS.
  6. J. Stöhr, R. J. Madix, D. A. Outka and U. Dobler, Phys. Rev. Lett., 1985, 54, 1256 CrossRef.
  7. A. Puschmann, J. Haase, M. D. Crapper, C. E. Riley and D. P. Woodruff, Phys. Rev. Lett., 1985, 54, 2250 CrossRef CAS.
  8. M. D. Crapper, C. E. Riley and D. P. Woodruff, Phys. Rev. Lett., 1986, 57, 2598 CrossRef CAS.
  9. M. D. Crapper, C. E. Riley, D. P. Woodruff, A. Puschmann and J. Haase, Surf. Sci., 1986, 171, 1 CrossRef CAS.
  10. M. D. Crapper, C. E. Riley and D. P. Woodruff, Surf. Sci., 1987, 184, 121 CAS.
  11. Th. Lindner, J. Sommers, A. M. Bradshaw and G. P. Williams, Surf. Sci., 1987, 185, 75 CAS.
  12. P. Hofmann and D. Menzel, Surf. Sci., 1987, 191, 353 CAS.
  13. D. P. Woodruff, C. F. McConville, A. L. D. Kilcoyne, Th. Lindner, J. Somers, M. Surman, G. Paolucci and A. M. Bradshaw, Surf. Sci., 1988, 201, 228 CrossRef CAS.
  14. L. S. Caputi, G. Chiarello, M. G. Lancelotti, G. A. Rizzi, M. Sambi and G. Granozzi, Surf. Sci., 1993, 291, L756 CrossRef CAS.
  15. M. Sambi, G. Granozzi, M. Casarin, G. A. Rizzi, A. Vittadini, L. S. Caputi and G. Chiarello, Surf. Sci., 1994, 315, 309 CrossRef CAS.
  16. B. A. Sexton and R. J. Madix, Surf. Sci., 1981, 105, 177 CrossRef CAS.
  17. J. McCarty, J. Falconer and R. J. Madix, J. Catal., 1973, 31, 316 CrossRef.
  18. M. A. Barteau, M. Bowker and R. J. Madix, Surf. Sci., 1980, 94, 303 CrossRef CAS.
  19. A. G. Sault and R. J. Madix, Surf. Sci., 1986, 176, 415 CrossRef CAS.
  20. P. A. Stevens, R. J. Madix and J. Stöhr, Surf. Sci., 1990, 230, 1 CrossRef CAS.
  21. M. Casarin, G. Granozzi, M. Sambi, E. Tondello and A. Vittadini, Surf. Sci., 1994, 307–309, 95 CrossRef CAS.
  22. B. Delley, J. Chem. Phys., 1990, 92, 508 CrossRef CAS.
  23. The nearest neighbour Cu–Cu internuclear distance on the Cu(100) and Cu(110) surfaces is the same.
  24. Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 64th edn., 1984 Search PubMed.
  25. H. Nakatsuji, M. Yoshimoto, M. Hada, K. Domen and C. Hirose, Surf. Sci., 1995, 336, 232 CrossRef CAS.
  26. M. A. Szymanski and M. J. Gillan, Surf. Sci., 1996, 367, 135 CrossRef CAS.
  27. H. Nakatsuji, M. Yoshimoto, Y. Umemura, S. Takagi and M. Hada, J. Phys. Chem., 1996, 100, 694 CrossRef CAS.
  28. S. A. Chambers, S. Thevuthasan, Y. J. Kim, G. S. Herman, Z. Wang, E. Tober, R. Ynzunza, J. Morais, C. H. F. Peden, K. Ferris and C. S. Fadley, Chem. Phys. Lett., 1997, 267, 51 CrossRef CAS.
  29. These structural parameters are very similar to those pertaining to HCOO on Cu(100) and Cu(110) surfaces.13,15.
  30. W. S. Sim, P. Gardner and D. A. King, J. Phys. Chem., 1996, 100, 12509 CrossRef CAS.
  31. The nearest neighbour Ag–Ag distance is the same on the Ag(110) and Ag(111) surfaces.
  32. In ref. 21 the basis set of Cu atoms not directly involved in the Cu–O bonding did not include the virtual NAOs of Cu2+. Furthermore, the basis sets of the O and C atoms, besides the virtual 2s and 2p NAOs relative to the double charged species, included a single hydrogenic 3d NAO obtained by using Z= 5.
  33. J. Ushio, I. Papai, A. St-Amant and D. R. Salahub, Surf. Sci. Lett., 1992, 262, L135 Search PubMed.
  34. R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833 CAS.
  35. In Table 1 the expression work function refers to the ionization potential of the highest occupied MO (HOMO) of each cluster through the use of the Koopmans' theorem.41.
  36. V. L. Moruzzi, A. R. Williams and J. F. Janak, Phys. Rev. B, 1977, 15, 2854 CrossRef CAS.
  37. H. B. Michaelson, J. Appl. Phys., 1977, 48, 4729 CrossRef CAS.
  38. S. Hüfner, G. K. Wertheim, N. V. Smith and M. M. Traum, Solid State Commun., 1972, 11, 323 CrossRef.
  39. C. N. Berglund and W. W. Spicer, Phys. Rev. A, 1964, 136, 1044 CAS.
  40. T. C. Koopmans, Physica, 1933, 1, 104 Search PubMed.
  41. A further calculation for the Cu60 cluster of ref. 21 has been carried out by using the extended basis set herein adopted for Cu44(ICu) and Cu46(IICu). The binding energy, Eb : attained per atom (3.11 eV) agrees with (i) the Eb per atom pertaining to ICu and IICu and (ii) the Eb per atom reported by Delley et al.(3.03 eV) for Cu79.43 This fact makes us confident that the sizes of the adopted clusters are large enough to avoid Eb oscillations.
  42. B. Delley, D. E. Ellis, A. J. Freeman, E. J. Baerends and D. Post, Phys. Rev. B, 1983, 27, 2132 CrossRef CAS.
  43. (a) S. D. Peyerimhoff, P. S. Skell, D. D. May and R. J. Buenker, J. Am. Chem. Soc., 1982, 104, 4515 CrossRef CAS; (b) D. Feller, E. S. Huyser, W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 1983, 105, 1459 CrossRef CAS.
  44. In the evaluation of the adsorbed–substrate Eb we always made reference to the Eb(20.5 eV) of the free HCOO lowest electronic state: 2A1.
  45. The Eb of HCOO on M(110) through the use of the HCOO–M4 and HCOO–M7 clusters are significantly smaller (2.8 and 1.92 eV for HCOO–Cu4 and HCOO–Ag4, respectively; 1.79 and 1.61 eV for HCOO–Cu7 and HCOO–Ag7, respectively) than those computed by adopting IM and IIM(Fig. 4). Nevertheless, variations in Eb on passing from the BB to the BC site or on moving from one substrate to the other are reproduced well.
  46. M. A. Barteau and R. J. Madix, Surf Sci., 1982, 120, 262 CrossRef CAS.
  47. The HCOOπ1 and π2 MOs are O—C—O totally bonding and non-bonding, respectively. In the surface HCOO, they are parallel to the metallic substrate.
  48. In the surface HCOO, n+ and n point directly toward the M atoms of the metallic substrate.
  49. Such a result agrees very well with theoretical data we recently published in a comparative study of CO and NO chemisorption on Cu2O(111) and Ag2O(111) non-polar surfaces.51.
  50. M. Casarin, C. Maccato and A. Vittadini, Chem. Phys. Lett., 1997, 280, 53 CrossRef CAS.
  51. The significant involvement of Cu1 3d orbitals in the HCOO–Cu(110) bonding can be appreciated (Fig. 6) by the presence of an evident shoulder on the low energy side of the Cu1 3d peak.
  52. It has to be noted that Cu(110)-to-HCOO donation is substantially accounted for by the Cu1 4s AOs.
  53. In the HCOO DP of HCOO–ICu and HCOO–IICu a shoulder is present on the high energy side of the first peak (Fig. 6). This shoulder is not a genuine HCOO orbital but is actually due, in both cases, to MOs accounting for an antibonding interaction between the Cu 3d AOs and the O n+ n+ linear combinations. In the HCOO DP of HCOO–IAg and HCOO–IIAg a shoulder is present on the low energy side of the first peak; this shoulder is not a genuine HCOO orbital but is due, in both cases, to MOs accounting for a bonding interaction between the Ag 4d AOs and the O n/n+ linear combinations.
  54. R. W. Joyner and M. W. Roberts, Proc. R. Soc. London, Ser. A, 1976, 350, 107 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.