Preparation and characterization of anatase powders

(Note: The full text of this document is currently only available in the PDF Version )

Athanassios Tsevis, Nikos Spanos, Petros G. Koutsoukos, Ab J. van der Linde and Johannes Lyklema


Abstract

Anatase powders have been prepared by precipitation and by sol–gel methods. In the former, titania was continuously precipitated at 25°C, pH 1.97 in a stirred reactor by mixing TiOSO4 and potassium hydroxide so as to keep solution supersaturation constant throughout the precipitation process. The preparations were performed in the absence and in the presence of Li+, Nb5+ and W6+ ions. In all cases anatase was the sole phase forming. The presence of these metal ions (1–7×10-5M) did not influence the precipitation kinetics, which was controlled by surface integration. XPS analysis showed that the dopant ions were incorporated into the anatase lattice for the preparations in supersaturated solutions. Microelectrophoresis experiments did not show any differentiation of the electric charge of the preparations in the presence and in the absence of these ions. The relatively high specific surface area (SSA) of the anatase obtained (135 g-1) increased (up to 250 g-1) by the incorporation of the dopant ions. In the sol–gel preparations the process was found to depend on the supersaturation of the sol with respect to the solid phase forming. A threshold sol composition corresponding to a total titanium concentration of CTi=0.06 M (25°C, pH=2.5–3.0) was found to be critical for the formation of the gel. Anatase was exclusively formed both in the absence and in the presence of dopant ions in the gel. The SSA obtained was low although it increased in the presence of dopant metal ions. Electrokinetic measurements of the solids formed by the sol–gel method, suggested that the dopant ions tend to accumulate on the surface of the anatase particles.


References

  1. M. Schneider, M. Maciejewski, S. Tschudin, A. Wokaun and A. Baiker, J. Catal., 1994, 149, 326 CrossRef CAS.
  2. E. C. Akubuiro and X. E. Verykios, J. Catal., 1987, 103, 320 CAS; 1988, 113, 106.
  3. E. C. Akubuiro, T. Ioannides and X. E. Verykios, J. Catal., 1989, 116, 590 CAS.
  4. E. C. Akubuiro, X. E. Verykios and T. Ioannides, Appl. Catal., 1989, 46, 297 CrossRef CAS.
  5. T. Ioannides and X. E. Verykios, J. Catal., 1994, 145, 479 CrossRef CAS.
  6. T. Ioannides, X. E. Verykios, M. Tsapatis and C. Economou, J. Catal., 1994, 145, 491 CrossRef CAS.
  7. P. N. C. Kumar, PhD Thesis, University of Twente, Enschede, The Netherlands, 1993.
  8. S. T. Martin, H. Herrmann, W. Chd and M. R. Hoffmann, J. Chem. Soc. Faraday Trans., 1994, 90, 3315 RSC.
  9. M. Grätzel and R. F. Howe, J. Phys. Chem., 1990, 94, 2566 CrossRef.
  10. G. C. Bond and S. F. Tahir, Appl. Catal., 1991, 71, 1 CrossRef CAS.
  11. J. Garside and O. Söhnel, Precipitation, Butterworths, London, 1993 Search PubMed.
  12. Y. Suyama and A. Kato, J. Am. Ceram. Soc., 1976, 56, 146.
  13. M. Yan, W. Rhodes and L. Springer, Am. Ceram. Soc. Bull., 1982, 61, 911.
  14. J. H. Jean and T. A. Ring, Colloids Surf., 1988, 29, 273 CrossRef CAS.
  15. J. H. Jean and T. A. Ring, Langmuir, 1986, 2, 251 CrossRef CAS.
  16. D. A. Ward and E. I. Ko, Ind. Eng. Chem. Res., 1995, 34, 421 CrossRef CAS.
  17. C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Academic, New York, 1990 Search PubMed.
  18. Vogel's Textbook of Quantitative Inorganic Analysis, ed. J. Bassek, R. C. Denney, G. H. Jeffrey and J. Mendhan, Longman, London and New York, 4th edn., 1978, p. 750 Search PubMed.
  19. R. G. Bates, pH Determination, Wiley, New York, 2nd edn., 1973, pp. 71–75 Search PubMed.
  20. M. M. Minor and A. J. van der Linde, Determination of the streaming potential, requirements and results, Dept. Phys. Colloid Chem., Agricultural University of Wageningen, The Netherlands, Internal Report, 1996.
  21. C. Papelis, K. F. Hayes and J. O. Leckie, HYDRAQL: A program for the computation of chemical equilibrium composition of aqueous batch systems including surface complexation modeling and ion adsorption at the oxide/solution interface, Tech. Rep. No 306, Stanford Univ., Stanford, CA, 1988.
  22. R. M. Smith and A. E. Martell, Critical Stability Constant, vol. 4, Inorganic complexes, Plenum Press, New York, 1981 Search PubMed.
  23. J. W. Mullin, Crystallization, Butterworth-Heinemann, Oxford, 3rd edn., 1993 Search PubMed.
  24. O. Söhnel, Coll. Czech. Chem. Commun., 1975, 40, 2560 CAS.
  25. O. Söhnel and J. Marecek, Krist. Tech., 1978, 13, 253 Search PubMed.
  26. E. Dalas and P. G. Koutsoukos, Langmuir, 1988, 4, 907 CrossRef CAS.
  27. A. Tsevis and P. G. Koutsoukos, Improvement of Reduction NOx Catalysts 4th EC Report, Patras, 1994 Search PubMed.
  28. A. Tsevis, N. Spanos, P. G. Koutsoukos, A. J. van der Linde and J. Lyklema, The Preparation and Properties of Anatase Powders. Precipitation and Sol–gel Methodologies, 5th Workshop HCM Research Network, Wageningen, The Netherlands, January 1997 Search PubMed.
  29. L. Vordonis, P. G. Koutsoukos and A. S. Lycourghiotis, J. Chem. Soc., Chem. Commun, 1984, 1309 RSC.
  30. P. G. Koutsoukos and A. S. Lycourghiotis, Colloids Surf., 1991, 55, 297 CrossRef CAS.
  31. R. C. Blake, E. A. Shute and G. T. Howard, Appl. Environ. Microbiol., 1994, 60, 3349 CAS.
  32. C. C. Brinton and M. A. Laufer, in Electrophoresis, Theory Methods and Applications, ed. M. Bier, Academic Press, New York, 1959, vol. 1, pp. 427–492 Search PubMed.
  33. J. Lyklema, Fundamentals of Interface and Colloid Science, Academic Press, London, 1995, vol. 2, p. 3107 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.