Kinetics and thermochemistry of the R+HBr⇄RH+Br (R=C2H5 or β-C2H4Cl) equilibrium An abinitio study of the bond energies in partly chlorinated ethanes and propanes

(Note: The full text of this document is currently only available in the PDF Version )

Jorma A. Seetula


Abstract

The kinetics of the reaction of ethyl and β-chloroethyl radicals with HBr have been investigated under pseudo-first-order conditions in a heatable tubular reactor. The pressure-independent rate constants determined were fitted to the following Arrhenius expression (error limits stated are 1σ+Student's t values, units in cm3 molecule-1 s-1): k(C2H5)=(1.87±0.14)×10-12 exp[+(3.7±0.2) kJ mol-1/RT] and k(β-C2H4Cl)=(5.7±1.6)×10-13 exp[+(2.2±0.8) kJ mol-1/RT]. The kinetic data were used in a second-law procedure to calculate the entropy and enthalpy of formation values for the radicals studied at 298 K (entropy in J K-1 mol-1 and enthalpy in kJ mol-1): 244±6, 120.7±2.1 (C2H5) and 271±7, 93.0±2.4 (β-C2H4Cl). The enthalpy of formation values of chloroethyl radicals were used in group additivity calculations to obtain ΔfH298° values for six monochlorinated propyl and butyl radical isomers. Extensive abinitio molecular orbital calculations at the MP4/6-311G(d,p) level were used to determine all bond energies in monochlorinated ethane and propane, and in dichlorinated ethane molecules. The global minimum structures of open- and closed-shell species needed for calculations were determined at the MP2/6-31G(d,p) level. The calculated values are in close agreement with experimentally determined bond enthalpies. The calculations show a significant effect of chlorine atom(s) on the structure of chlorinated free radicals and on the bond energies of chlorinated molecules.


References

  1. P. Beichert, L. Wingen, J. Lee, R. Vogt, M. J. Ezell, M. Ragains, R. Neavyn and B. J. Finlayson-Pitts, J. Phys. Chem., 1995, 99, 13156 CrossRef CAS.
  2. J. M. Nicovich, S. Wang, M. L. McKee and P. H. Wine, J. Phys. Chem., 1996, 100, 680 CrossRef CAS.
  3. J. A. Seetula, D. Gutman, P. D. Lightfoot, M. T. Rayez and S. M. Senkan, J. Phys. Chem., 1991, 95, 10 688 CrossRef CAS.
  4. L. Andrews, J. M. Dyke, N. Jonathan, N. Keddar and A. Morris, J. Am. Chem. Soc., 1984, 106, 299 CrossRef CAS.
  5. J. A. Seetula, J. Chem. Soc., Faraday Trans., 1996, 92, 3069 RSC.
  6. K. Miyokawa and E. Tschuikow-Roux, J. Phys. Chem., 1990, 94, 715 CrossRef CAS.
  7. G. C. Fettis and J. H. Knox, in Progress in Reaction Kinetics, ed. G. Porter, Pergamon, New York, 1964, vol. 2, p. 1 Search PubMed.
  8. J. W. Coomber and E. Whittle, Trans. Faraday Soc., 1966, 62, 1553 RSC.
  9. E. Tschuikow-Roux, T. Yano and J. Niedzielski, J. Chem. Phys., 1985, 82, 65 CrossRef CAS.
  10. E. Tschuikow-Roux, J. Niedzielski and F. Faraji, Can. J. Chem., 1985, 63, 1093 CAS.
  11. J. A. Seetula and I. R. Slagle, J. Chem. Soc., Faraday Trans., 1997, 93, 1709 RSC.
  12. I. R. Slagle and D. Gutman, J. Am. Chem. Soc., 1985, 107, 5342 CrossRef CAS.
  13. J. A. Seetula, Ann. Acad. Sci. Fenn., Ser. A2, 1991, 234 Search PubMed.
  14. P. W. Seakins, M. J. Pilling, J. T. Niiranen, D. Gutman and L. N. Krasnoperov, J. Phys. Chem., 1992, 96, 9847 CrossRef CAS.
  15. J. L. Brum, S. Deshmukh and B. Koplitz, J. Chem. Phys., 1990, 93, 7504 CrossRef CAS.
  16. M. W. Chase Jr., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald and A. N. Syverud, J. Phys. Chem. Ref. Data, 1985, 14, Suppl. No. 1.
  17. A. Burcat, in Combustion Chemistry, ed. W. C. Gardiner Jr., New York, 1984, ch. 8 Search PubMed.
  18. D. A. Pittam and G. Pilcher, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 2224 RSC.
  19. Y. Chen, A. Rauk and E. Tschuikow-Roux, J. Phys. Chem., 1990, 93, 1187 CrossRef CAS.
  20. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Supplement No. 1.
  21. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, J. Phys. Chem. Ref. Data, 1982, 11, Supplement No. 2.
  22. S. W. Benson, Thermochemical Kinetics, Wiley, New York, 2nd. edn., 1976 Search PubMed.
  23. Y. Chen and E. Tschuikow-Roux, J. Phys. Chem., 1992, 96, 7266 CrossRef CAS.
  24. J. B. Foresman and Æleen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburg, 2nd edn., 1996 Search PubMed.
  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Conzales and J. A. Pople, GAUSSIAN 94, Revision B.1, Gaussian, Inc., Pittsburgh PA, 1995.
  26. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  27. J. J. Russell, J. A. Seetula, S. M. Senkan and D. Gutman, Int. J. Chem. Kinet., 1988, 20, 759 CrossRef CAS.
  28. O. Dobis and S. W. Benson, Int. J. Chem. Kinet., 1987, 19, 691 CrossRef CAS.
  29. M. A. Hanning-Lee, N. J. B. Green, M. J. Pilling and S. H. Robertson, J. Phys. Chem., 1993, 97, 860 CrossRef.
  30. C. W. Bauschlicher Jr. and H. Partridre, Chem. Phys. Lett., 1995, 239, 246 CrossRef CAS.
  31. J. C. Amphlett and E. Whittle, Trans. Faraday Soc., 1968, 64, 2130 RSC.
  32. J. L. Holmes and F. P. Lossing, J. Am. Chem. Soc., 1988, 110, 7343 CrossRef CAS.
  33. C. F. Rodriquez, D. K. Bohme and A. C. Hopkinson, J. Phys. Chem., 1996, 100, 2942 CrossRef CAS.
  34. K. Aarset, K. Hagen and R. Stølevik, J. Phys. Chem., 1995, 99, 11089 CrossRef CAS.
  35. J. W. Hudgens, R. D. Johnson III, R. S. Timonen, J. A. Seetula and D. Gutman, J. Phys. Chem., 1991, 95, 4400 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.