Theoretical study of the structure and torsional potential of pyrrole oligomers

(Note: The full text of this document is currently only available in the PDF Version )

Salvatore Millefiori and Andrea Alparone


Abstract

The molecular structure and conformational behaviour of 2,2′-bipyrrole (α-BPy), 2,2′:5′,2″-terpyrrole (α-TPy) and 2,2′:5′,2″:5″,2‴-quaterpyrrole (α-QPy) have been determined by abinitio HF, MP2 and density functional theory methods, using the 6-31G* basis set. The synanti interconversion process through internal rotation about the C–C inter-ring bond generates in all calculations a three-barrier, four-fold potential. Minima are found in the anti-gauche and syn-gauche regions, maxima for the planar and perpendicular conformations, the anti-gauche structure being the global minimum. The energetics and the location of these critical points significantly depend on the theoretical method, the electron correlation and zero-point vibrational energies beng important factors. The relaxed rotor approximation must be used to obtain quantitative results, especially in the syn region where strong NH–NH dipole interactions are present which induce some loss of planarity of the pyrrole ring and tilting of the NH bond with respect to the ring plane. HF and B3LYP potential-energy curves are rather flat, particularly around the planar anti conformation, suggesting conformational flexibility. By contrast MP2 calculations strongly favour the anti-gauche form, indicating hindered rotation. The energetics and conformational behaviour of α-oligopyrroles are closely related to the torsional potential of the parent α-BPy. The minimum-energy conformations of α-TPy and α-QPy were all found to be anti-gauche (helix-like) structures. There is evidence that the π-electron system strengthens, the geometrical parameters of the pyrrole ring rapidly converge and the torsional potential around the planar anti conformation decreases as the α-oligomerization increases, suggesting that in the polymer limit planar, very conformationally flexible structures are highly probable, in agreement with the X-ray results in the solid. The potential-energy curves were analyzed in terms of conjugative and nonbonding interactions through a Fourier decomposition procedure. This highlights the predominant role of nonbonding interactions over conjugative ones and the peculiar behaviour of the MP2 method which favours hyperconjugative and probably NH–π hydrogen-bonding interactions which stabilize the perpendicular conformation.


References

  1. A. O. Patil, A. J. Heeger and F. Wudl, Chem. Rev., 1988, 88, 183 CrossRef CAS.
  2. A. J. Heeger, S. Kivelson, J. R. Schrieffer and W.-P. Su, Rev. Mod. Phys., 1988, 60, 781 CrossRef CAS.
  3. Nonlinear Optical Properties of Polymers, ed. A. J. Heeger, J. Orenstein and D. R. Ulrich, MRS Symposia Proceedings N.109, Materials Research Society, Pittsburgh, 1988 Search PubMed.
  4. Handbook of Conducting Polymers, ed. T. A. Skotheim, Marcel Dekker, New York, 1986, vol. 1 and 2 Search PubMed.
  5. Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, ed. J. L. Brédas and R. R. Chance, NATO ASI Ser. E, Vol. 182, Kluwer, Dordrecht, 1990 Search PubMed.
  6. (a) V. Hernandez, C. Castiglioni, M. Del Zoppo and G. Zerbi, Phys Rev. B, 1994, 50, 9815 CrossRef CAS and references therein; (b) R. H. Baughman and R. R. Chance, J. Poym. Sci. Polym. Phys. Ed., 1976, 14, 2037 Search PubMed; (c) G. N. Patel, R. R. Chance and J. D. Witt, J. Chem. Phys., 1979, 70, 4387 CrossRef CAS; (d) G. Wenz, M. A. Muller, M. Schmidt and G. Wegner, Macromolecules, 1984, 17, 837 CrossRef CAS; (e) G. Zerbi, M. Veronelli, S. Martina, A.-D. Schlüter and G. Wegner, Adv. Mater., 1994, 6, 385 CrossRef CAS.
  7. (a) A. F. Diaz, K. K. Kanazawa and G. P. Gardini, J. Chem. Soc., Chem. Commun., 1988, 183 RSC; (b) K. K. Kanazawa, A. F. Diaz, R. H. Geiss, W. D. Gill, J. F. Kwak, J. A. Logan, J. F. Rabolt and G. B. Street, J. Chem. Soc., Chem. Commun., 1979, 635 RSC; (c) K. K. Kanazawa, A. F. Diaz, W. D. Gill, P. H. Grant, G. B. Street, G. P. Gardini and J. F. Kwak, Synth. Met., 1980, 1, 329 CAS.
  8. L. A. Prezyna, Y. J. Qiu, J. R. Reynolds and G. E. Wnek, Macromolecules, 1991, 24, 5283 CrossRef CAS.
  9. S. K. Ghoshal, Chem. Phys. Lett., 1989, 158, 65 CrossRef CAS.
  10. B. Z. Lubentsov, G. I. Zvereva, Ya. H. Samovarov, S. M. Bystriak, O. N. Timofeeva and M. L. Khidekel, Synth. Met., 1991, 41, 1143 CAS.
  11. (a) T. C. Pearce, J. W. Gardner, S. Friel, P. N. Bartlett and N. Blair, Analyst, 1993, 118, 371 RSC; (b) B. P. J. de Lacy Costello, P. Evans, R. J. Ewen, C. L. Honeybourne and N. M. Ratcliffle, J. Mater. Chem., 1996, 6, 289 RSC; (c) P. Evans, N. M. Ratcliffe, J. R. Smith and S. A. Campbell, J. Mater. Chem., 1996, 6, 295 RSC.
  12. P. R. Teasdale and G. G. Vallace, Analyst, 1993, 118, 329 RSC.
  13. E. V. Thillo, G. Defieuw and W. de Winter, Bull. Soc. Chim. Belg., 1990, 99, 981.
  14. C. J. Gow and C. F. Zukoski, J. Colloid Interface Sci., 1990, 136, 175 CAS.
  15. T. Sata, T. Yamaguchi and K. Matsusaki, J. Phys., Chem., 1996, 100, 16633 CrossRef CAS.
  16. G. C. Teare and N. M. Ratcliffe, J. Mater. Chem., 1996, 6, 301 RSC.
  17. S. Martina, U. Enkelmann, A.-D. Schlüter and G. Wegner, Synth. Met., 1991, 41, 403 CAS.
  18. L. Groenendaal, H. W. I. Peerlings, J. L. T. van Dogen, E. E. Havinga, J. A. J. M. Vekemans and E. W. Meijer, Macromolecules, 1995, 28, 116 CrossRef CAS.
  19. L. Nygaard, J. T. Nielsen, J. Kirchheiner, G. Maltesen, J. Rastrup-Andersen and G. O. Sørensen, J. Mol. Struct., 1969, 3, 491 CrossRef CAS.
  20. (a) J. L. Brédas, R. Silbey, D. S. Boudreaux and R. R. Chance, J. Am. Chem. Soc., 1983, 105, 6555 CrossRef CAS; (b) J.-M. André, D. P. Vercauteren, G. B. Street and J. L. Brédas, J. Chem. Phys., 1984, 80, 5643 CrossRef CAS; (c) J. L. Brédas, G. B. Street, B. Thémans and J.-M. André, J. Chem. Phys., 1985, 83, 1323 CrossRef CAS; (d) D. Beljonne and J. L. Brédas, Phys. Rev. B, 1994, 50, 2841 CrossRef CAS; (e) A. K. Bakhshi Poia, J. Chem. Soc., Faraday Trans., 1996, 92, 2281 RSC.
  21. G. Rossi, R. R. Chance and R. Silbey, J. Chem. Phys., 1989, 90, 7594 CrossRef CAS.
  22. (a) M. Kofranek, T. Kovár, A. Karpfen and H. Lischka, J. Chem. Phys., 1992, 96, 4464 CrossRef CAS; (b) B. Tian and G. Zerbi, J. Chem. Phys., 1990, 92, 3886 CrossRef CAS; (c) E. Faulques, W. Wallnöfer and H. Kuzmany, J. Chem. Phys., 1989, 90, 7585 CrossRef CAS; (d) R. Kostić, D. Raković, S. A. Stepanyan, I. E. Davidova and L. A. Gribov, J. Chem. Phys., 1995, 102, 3104 CrossRef CAS; (e) G. Zerbi, M. Veronelli, S. Martina, A.-D. Schlüter and G. Wegner, J. Chem. Phys., 1994, 100, 978 CrossRef CAS.
  23. (a) Y. Verbandt, H. Thiepont, I. Veretennicoff and P. Geerlings, Chem. Phys. Lett., 1996, 251, 47 CrossRef CAS; (b) J. L. Toto, T. T. Toto and C. P. de Melo, Chem. Phys. Lett., 1995, 245, 660 CrossRef CAS; (c) J. L. Toto, T. T. Toto, C. P. de Melo and K. A. Robins, J. Chem. Phys., 1995, 102, 8048 CrossRef CAS; (d) V. Keshari, M. K. P. Wijekoon, P. N. Prasad and S. P. Karna, J. Phys. Chem., 1995, 99, 9045 CrossRef CAS; (e) A. Hinchliffe and M. H. J. Soscún, J. Mol. Struct. (THEOCHEM), 1995, 331, 109 CrossRef CAS; (f) Y. Matsuzaki, M. Nakano, K. Yamaguchi, T. Tanaka and T. Yamab, Chem. Phys. Lett., 1996, 263, 119 CrossRef CAS.
  24. (a) E. D. Simandiras, N. C. Handy and R. D. Amos, J. Phys. Chem., 1988, 92, 1739 CrossRef CAS; (b) P. I. Nagy, G. J. Durant and D. A. Smith, J. Am. Chem. Soc., 1993, 115, 2912 CrossRef CAS; (c) N. El-Bakali Kassimi, R. J. Doerksen and A. J. Thakkar, J. Phys. Chem., 1995, 99, 12 790 CrossRef CAS; (d) S. Y. Lee and B. H. Boo, J. Phys. Chem., 1996, 100, 15 078.
  25. E. Ortí, J. Sánchez-Marín and F. Tomás, Theor. Chim. Acta, 1986, 69, 41 CAS.
  26. L. Padilla-Campos and A. Toro-Labbè, J. Mol. Struct. (THEOCHEM), 1995, 330, 223 CrossRef CAS.
  27. (a) V. Galasso and N. Trinajstic, Tetrahedron, 1972, 28, 4419 CrossRef CAS; (b) E. Ortí, F. Tomás and J. Sánchez-Marín, J. Mol. Spectrosc., 1983, 104, 197; (c) J. T. Lopez Navarrete, B. Tian and G. Zerbi, Synth. Met., 1990, 38, 299 CrossRef; (d) S. Y. Hong, S. J. Kwon, S. C. Kim and D. S. Marynick, Synth. Met., 1995, 69, 701 CrossRef CAS; (e) S. Y. Hong, Bull. Korean Chem. Soc., 1995, 16, 845 CAS; (f) M. Breza and V. Laurinc, Macromol. Theory Simul., 1996, 5, 107 CAS; (g) R. J. Waltman and J. Bargon, Tetrahedron, 1984, 40, 3963 CrossRef CAS; (h) E. Yurtsever and B. Erman, Polymer, 1993, 34, 3887 CAS.
  28. K. Burke, J. P. Perdew and M. Levy, Modern Density Functional Theory: A Tool for Chemistry, ed. J. M. Seminario and P. Politzer, Elsevier, Amsterdam, 1994 Search PubMed.
  29. (a) Density Functional Methods in Chemistry, ed. J. Lobanowski and J. W. Andzelm, Springer-Verlag, New York, 1991 Search PubMed; (b) N. Oliphant and R. J. Bartlett, J. Chem. Phys., 1994, 100, 6550 CrossRef CAS.
  30. J. R. Smith, P. A. Cox, S. A. Campbell and N. M. Ratcliffe, J. Chem. Soc., Faraday Trans., 1995, 91, 2331 RSC.
  31. GAUSSIAN 94, Revision B.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. StewartM. Head-GordonC. Gonzales and J. A. Pople, Gaussian, Inc., Pittsburg PA, 1995.
  32. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  33. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  34. (a) Internal Rotation in Molecules, ed. W. J. Orville-Thomas, J. Wiley, London, 1974 Search PubMed; (b) L. Radom and J. A. Pople, J. Am. Chem. Soc., 1970, 92, 4786 CrossRef CAS.
  35. L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York, 1966 Search PubMed.
  36. E. Ortí, P. M. Viruela, J. Sánchez-Marín and F. Tomás, J. Phys. Chem., 1995, 99, 4955 CrossRef.
  37. S. Millefiori and A. Alparone, in preparation.
  38. G. J. Pyrka and Q. Fernando, Acta Crystallogr., Sect. C, 1988, 44, 562 CrossRef.
  39. S. Samdal, E. J. Samuelsen and H. V. Volden, Synth. Met., 1993, 59, 259 CrossRef CAS.
  40. V. Hernandez and J. T. Lopez-Navarrete, J. Chem. Phys., 1994, 101, 1369 CrossRef CAS.
  41. M. Ciofalo and G. La Manna, Chem. Phys. Lett., 1996, 263, 73 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.