Laser flash photolysis studies of some rhodamine dyes Characterisation of the lowest excited singlet state of Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101

(Note: The full text of this document is currently only available in the PDF Version )

Paul C. Beaumont, David G. Johnson and Barry J. Parsons


Abstract

The UV–VIS absorptive and emissive properties of three laser dyes, viz Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101, have been studied in ethanol. Time-resolved methods were used to study the decay of the first excited singlet state of each dye. The absorptive properties of the lowest excited singlet states of the dyes were generated using picosecond laser pulses. Values for the absorption coefficient for the Sn←S1 absorption process were measured, for each dye, by both comparative and complete-depletion methods. Values for the S4←S1 absorption process, in ethanol, were found to be 4.6×104 (444 nm), 3.4×104 (446 nm) and 3.6×104 (458 nm) d mol-1 cm-1 for Rhodamine 3B, Sulforhodamine B and Sulforhodamine 101, respectively, with the corresponding values for the S3←S1 absorption process being measured as 1.0×105 (556 nm), 1.2×105 (556 nm) and 1.2×105 (578 nm) d mol-1 cm-1. The relevance of such data in predicting lasing characteristics of dyes is discussed.


References

  1. P. P. Sorokin and J. R. Lankard, IBM J. Res. Dev., 1976, 10, 162 Search PubMed.
  2. F. P. Schäfer, Top. Curr. Chem., 1976, 61, 1 CAS.
  3. L. G. Nair, Prog. Quantum Electron., 1982, 7, 153 CrossRef CAS.
  4. P. C. Beaumont, D. G. Johnson and B. J. Parsons, J. Chem. Soc., Faraday Trans., 1993, 89, 4185 RSC.
  5. S. J. Atherton, S. M. Hubig, T. J. Callan, J. A. Duncanson, P. T. Snowden and M. A. J. Rodgers, J. Phys. Chem., 1987, 91, 3137 CrossRef CAS.
  6. J. Davilla and A. Harriman, Photochem. Photobiol., 1990, 51, 9.
  7. U. Brackmann, in Lambdachrome Laser Dyes, Lambda-Physik GmbH, Göttingen, 1986 Search PubMed.
  8. T. Karstens and K. Kobs, J. Phys. Chem., 1980, 84, 1871 CrossRef CAS.
  9. J. N. Demas and D. G. Taylor, J. Inorg. Chem., 1979, 18, 3177 Search PubMed.
  10. M. Z. Hoffmann, J. Phys. Chem., 1988, 92, 3458 CrossRef CAS.
  11. D. Magde, S. T. Gaffney and B. F. Campbell, IEEE J. Quantum Electron., 1981, 17, 489 CrossRef.
  12. P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani and A. Miahnahri, Pramana—J. Phys., 1987, 28, 59 Search PubMed.
  13. E. Sahar and D. Treeves, IEEE J. Quantum Electron., 1977, 13, 962 CrossRef.
  14. P. R. Hammond, IEEE J. Quantum Electron., 1980, 16, 1157 CrossRef.
  15. P. R. Hammond, IEEE J. Quantum Electron., 1979, 15, 624 CrossRef.
  16. M. C. Gazeau, V. Wintgens, P. Valat, J. Kossanyi, D. Doizi, G. Sawetat and J. Jaraudias, Can. J. Phys., 1993, 71, 59 CAS.
  17. P. C. Beaumont, D. G. Johnson and B. J. Parsons, J. Photochem. Photobiol. A: Chem., 1997, 107, 175 CrossRef CAS.
  18. D. M. Rayner, in Handbook of Organic Photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, FL, 1989, vol. 1, p. 215 Search PubMed.
  19. M. W. Ferguson, P. C. Beaumont, S. E. Jones, S. Navaratnam and B. J. Parsons, Congress of the European Society for Photobiology, Stresa, Italy, 8–13th September 1997, p. 78 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.