Temperature and pH-dependent inversion of photoelectric response in bacteriorhodopsin

(Note: The full text of this document is currently only available in the PDF Version )

Tao Lu, Bao Fang Li, Long Jiang, Ulrich Rothe and Udo Bakowsky


Abstract

The temperature and pH-related polarity inversions of transient photocurrents developed from randomly deposited bacteriorhodopsin (bR) films (on transparent conductive ITO glass) were investigated. It was observed that the photocurrent reversed its polarity when the bulk pH was changed from alkaline (pH=8) to acid (pH=3), but under extreme acidic conditions (pH=1), in combination with high salt (saturated KCl), the reversed photocurrent regained the same polarity as that obtained in alkaline solution, which supports the notion that at extremely low pH, a high Cl- concentration can catalyze the rate of the retinal photoisomerization. Moreover, heating the film (from 20 to 60°C) will also trigger a current inversion which differs from the pH-induced reversal. It evolves from a peak splitting process rather than through a cancellation step of the photocurrent. The splitting and the final inversion, which are pH-dependent, occur symmetrically on both the positive and negative stroke of the differential photocurrent. Comparative studies have been carried out and an explanation is discussed in terms of the inversion of the proton pump sequence.


References

  1. H. W. Trissl, Photochem. Photobiol., 1990, 51, 793 CAS.
  2. T. Miyasaka, K. Koyama and I. Itoh, Science, 1992, 255, 342 CrossRef CAS.
  3. K. Koyama, N. Yamaguchi and T. Miyasaka, Science, 1994, 265, 762 CrossRef CAS.
  4. B. Roberton and E. P. Lukashev, Biophys. J., 1995, 68, 1507.
  5. T. L. Okajima and F. T. Hong, Biophys. J., 1986, 50, 901 CAS.
  6. Y. Cao., L. S. Brown., R. Needleman and J. K. Lanyi, Biochemistry, 1993, 32, 10239 CrossRef CAS.
  7. P. Dupuis, T. C. Corcoran and M. A. El-Sayed, Proc. Natl. Acad. Sci. USA, 1985, 82, 3662 CAS.
  8. L. Keszthelyi, S. Szaraz, A. Der and W. Stoeckenius, Biochim. Biophys. Acta, 1990, 1018, 260 CrossRef CAS.
  9. A. Der, S. Szaraz, R. Toth-Boconadi, Z. Tokaji, L. Keszthely and W. Stoeckenius, Proc. Natl. Acad. Sci. USA, 1991, 88, 4751 CAS.
  10. R. Korenstein, W. V. Sherman and S. R. Caplan, Biophys. Struct. Mech., 1976, 2, 267 Search PubMed.
  11. C. H. Chang, R. Jonas, S. Melchiore, R. Govindjee and T. G. Ebrey, Biophys. J., 1986, 49, 731 CAS.
  12. I. Chizhov, M. Engelhard, D. S. Chernavskii, S. Zubov and B. Hess, Biophys. J., 1992, 61, 1001 CAS.
  13. D. Oesterhelt and W. Stoeckenius, Methods Enzymol., 1974, 31, 667 CAS.
  14. L. Zimanyi, Y. Cao, R. Needlman, M. Ottolenghi and J. K. Lanyi, Biochemstry, 1992, 32, 7669 Search PubMed.
  15. H. Garty, G. Klemperer, M. Eisenbach and S. R. Caplan, FEBS Lett., 1977, 81, 238 CrossRef CAS.
  16. L. Zimanyi, G. Varo, M. Chang, B. Ni, R. Needleman and J. K. Lanyi, Biochemistry, 1992, 31, 8535 CrossRef CAS.
  17. M. Kono, S. Misra and T. G. Ebrey, FEBS Lett., 1993, 331, 31 CrossRef CAS.
  18. S. P. Balashov, E. S. Imasheva, R. Govindjee and T. G. Ebrey, Biophys. J., 1996, 70, 473 CAS.
  19. S. L. Logunov, M. A. El-Sayed and J. K. Lanyi, Biophys. J., 1996, 71, 1545 CAS.
  20. S. Y. Liu, M. Kono and T. G. Ebrey, Biophys. J., 1991, 60, 204 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.