Potential-energy surfaces for ultrafast photochemistry Static and dynamic aspects

(Note: The full text of this document is currently only available in the PDF Version )

Marco Garavelli, Fernando Bernardi, Massimo Olivucci, Thom Vreven, Ste′phane Klein, Paolo Celani and Michael A. Robb


Abstract

The first singlet excited states (S1) which control the ultrafast (i.e. sub-picosecond) photochemistry of 2-cis-penta-2,4-dieniminium cation (2-cis-C5H6NH2+), all-trans-hexa-1,3,5-triene (all-trans-HT) and cyclohexa-1,3-diene (CHD) have been investigated using abinitio MCSCF and multireference MP2 theories. The structure of the corresponding potential energy surfaces (PESs) has been characterized by computing novel unconstrained and symmetry-constrained minimum-energy paths (MEP) starting from Franck–Condon and S2/S1 conical intersection points on S1. Furthermore, analytical frequency computations have been used to produce quantitative information on the surface curvature.

We show that the S1 energy surface is characterized by two domains, region I and region II. Region I controls the initial acceleration of the excited state molecule. In contrast, region II is a low-lying region of S1 and controls the evolution towards fully efficient decay to the ground state. The energy surface structure indicates that the double-bond isomerization of 2-cis-C5H6NH2+ and all-trans-HT and the ring-opening of CHD are prototypes of three classes of barrierless reactions characterized by a different excited state dynamics. In 2-cis-C5H6NH2+ and, more loosely, in all-trans-HT the initial relaxation results in the production of a totally symmetric S1 transient. The following triggering of the S1→S0 decay requires energy redistribution along a symmetry-breaking (torsional) mode leading to an S1/S0 conical intersection (CI). In contrast, the shape of region I of CHD indicates that an almost direct (i.e. impulsive) motion towards an asymmetric S1/S0 CI occurs upon initial relaxation. Previously reported and novel semi-classical trajectory computations and the available experimental evidence seem to support these conclusions.


References

  1. H. Petek, A. J. Bell, R. L. Christensen and K. Yoshihara, J. Chem. Phys., 1992, 96, 2412 CrossRef CAS.
  2. C. C. Hayden and D. W. Chandler, J. Phys. Chem., 1995, 99, 7897 CrossRef CAS.
  3. W. Fuβ, T. Schikarski, W. E. Schmid, S. Trushin, K. L. Kompa and P. Hering, J. Chem. Phys., 1997, 106, 2205 CrossRef.
  4. D. R. Cyr and C. C. Hayden, J. Chem. Phys., 1996, 104, 771 CrossRef CAS.
  5. K. Ohta, Y. Naitoh, K. Saitow, K. Tominaga, N. Hirota and K. Yoshihara, Chem. Phys. Lett., 1996, 256, 629 CrossRef CAS.
  6. P. J. Reid, S. J. Doig, S. D. Wickham and R. A. Mathies, J. Am. Chem. Soc., 1993, 115, 4754 CrossRef CAS.
  7. M. O. Trulson, G. D. Dollinger and R. A. Mathies, J. Chem. Phys., 1989, 90, 4274 CrossRef.
  8. P. J. Reid, S. J. Doig and R. A. Mathies, Chem. Phys. Lett., 1989, 156, 163 CrossRef CAS.
  9. S. A. Trushin, W. Fuβ, T. Schikarski, W. E. Schmid and K. L. Kompa, J. Chem. Phys., 1997, 106, 9386 CrossRef CAS.
  10. S. H. Pullen, N. A. Anderson, L. A. Walker II and R. J. Sension, J. Chem. Phys., 1998, 108, 556 CrossRef CAS.
  11. H. Kandori, Y. Katsuta, M. Ito and H. Sasabe, J. Am. Chem. Soc., 1995, 117, 2669 CrossRef CAS.
  12. S. L. Logunov, L. Song and M. El-Sayed, J. Phys. Chem., 1996, 100, 18586 CrossRef CAS.
  13. P. Hamm, M. Zurek, T. Röschinger, H. Patzelt, D. Oesterhelt and W. Zinth, Chem. Phys. Lett., 1996, 263, 613 CrossRef CAS.
  14. H. Kandori and H. Sasabe, Chem. Phys. Lett., 1993, 216, 126 CrossRef CAS.
  15. F. Bernardi, M. Olivucci and M. A. Robb, Chem. Soc. Rev., 1996, 25, 321 RSC.
  16. (a) J. Michl and M. KlessingerExcited States and Photochemistry of Organic Molecules, VCH, New York, 1995 Search PubMed; (b) J. Michl and V. Bonacic-Koutecky, Electronic Aspects of Organic Photochemistry, Wiley, New York, 1990 Search PubMed.
  17. M. Klessinger, Angew. Chem., Int. Ed. Engl., 1995, 34, 549 CrossRef CAS.
  18. A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry, Blackwell, Oxford 1991 Search PubMed.
  19. P. Celani, F. Bernardi, M. A. Robb and M. Olivucci, J. Phys. Chem., 1996, 100, 19364 CrossRef CAS.
  20. M. Garavelli, P. Celani, F. Bernardi, M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 1997, 119, 6891 CrossRef CAS.
  21. M. Garavelli, P. Celani, M. Fato, M. J. Bearpark, B. R. Smith, M. Olivucci and M. A. Robb, J. Phys. Chem., 1997, 101, 2023 Search PubMed.
  22. M. Garavelli, P. Celani, F. Bernardi, M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 1997, 119, 11487 CrossRef CAS.
  23. M. Garavelli, T. Vreven, P. Celani, F. Bernardi, M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 1998, 120, 1285 CrossRef CAS.
  24. P. Celani, M. A. Robb, M. Garavelli, F. Bernardi and M. Olivucci, Chem. Phys. Lett., 1995, 234, 1 CrossRef CAS.
  25. (a) The MC-SCF programme we used is implemented in Gaussian 94, Revision B.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995 Search PubMed.
  26. (a) K. Andersson, P.-A. Malmqvist and B. O. Roos, J. Chem. Phys., 1992, 96, 1218 CrossRef CAS; (b) MOLCAS, Version 3, K. Andersson, M. R. A. Blomberg, M. Fülscher, V. Kellö, R. Lindh, P.-A. Malmqvist, J. Noga, J. Olsen, B. O. Roos, A. J. Sadlej, P. E. M. Siegbahn, M. Urban, P. O. Widmark, University of Lund, Sweden, 1994.
  27. W. H. Miller, N. C. Handy and J. E. Adams, J. Chem. Phys., 1980, 72, 99 CrossRef CAS.
  28. D. G. Truhlar and M. S. Gordon, Science, 1990, 249, 491 CAS.
  29. F. Bernardi, M. Olivucci and M. A. Robb, J. Am. Chem. Soc., 1992, 114, 1606 CrossRef CAS.
  30. M. J. Bearpark, M. A. Robb, F. Bernardi and M. Olivucci, Chem. Phys. Lett., 1994, 217, 513 CrossRef CAS.
  31. B. R. Smith, M. J. Bearpark, M. A. Robb, F. Bernardi and M. Olivucci, Chem. Phys. Lett., 1995, 242, 27 CrossRef CAS.
  32. T. Helgaker, E. Uggerud and H. J. A. Jensen, Chem. Phys. Lett., 1990, 173, 145 CrossRef CAS.
  33. W. Chen, W. L. Hase and H. B. Schlegel, Chem. Phys. Lett., 1994, 228, 436 CrossRef CAS.
  34. (a) A. Warshel and M. Karplus, Chem. Phys. Lett., 1975, 32, 11 CrossRef CAS; (b) The dynamics of PSB11 photoisomerization has been investigated at the semiempirical level of theory by Warshel et al.(see A. Warshel, Nature (London), 1976, 260, 679 Search PubMed; A. Warshel, Proc. Natl. Acad. Sci. USA, 1978, 75, 2558 Search PubMed; A. Warshel, Z. T. Chu and J.-K. Hwang, Chem Phys., 1991, 158, 303 CAS.
  35. (a) R. K. Preston and J. C. Tully, J. Chem. Phys., 1971, 54, 4297 CrossRef CAS; (b) J. C. Tully and R. K. Preston, J. Chem. Phys., 1971, 55, 562 CrossRef CAS.
  36. (a) S. Klein, M. J. Bearpark, M. A. Robb, F. Bernali and M. Olivucci, Chem. Phys. Lett., 1998, in press Search PubMed; (b) W. Domcke and G. Stock, Adv. Chem. Phys., 1997, 100, 1 CAS.
  37. The importance of methyl substitution for the ultrafast dynamics of PSB11 in rhodopsin is under current investigation. See Q. Wang, G. G. Kochendoerfer, R. W. Schoenlein, P. J. E. Verdegem, J. Lugtenburg, R. A. Mathies and C. V. Shank, J. Phys. Chem., 1996, 100, 17388 Search PubMed; R. W. Schoenlein, L. A. Peteanu, Q. Wang, R. A. Mathies and C. V. Shank, J. Phys. Chem., 1993, 97, 12087 CrossRef CAS.
  38. T. Vreven, F. Bernardi, M. Garavelli, M. Olivucci, M. A. Robb and H. B. Schlegel, J. Am. Chem. Soc., 1997, 119, 12687 CrossRef CAS.
  39. P. Celani, S. Ottani, M. Olivucci, F. Bernardi and M. A. Robb, J. Am. Chem. Soc., 1994, 116, 10141 CrossRef CAS.
  40. M. Garavelli, T. Vreven, P. Celani, F. Bernardi, M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 1998, 120, 1285 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.