Quantum dynamics of the trimethylene biradical Stereomutation of cyclopropane and unimolecular decay

(Note: The full text of this document is currently only available in the PDF Version )

Evelyn M. Goldfield


Abstract

A reduced-dimensionality three degrees-of-freedom quantum dynamics calculation of the stereomutation of cyclopropane has been performed. In one set of calculations, wavepackets are initiated centered around stationary points on the conrotatory, disrotatory and single rotation (cis/trans conversion) pathways. The ratio of trans to cis isomer formed, Rtc, is shown to be highly dependent on the location, and average energy of the initial wavepacket as well as the initial orientation of the terminal methylene torsions. In a second set of calculations, wavepackets are initiated as ‘highly excited cyclopropane’, in one of the four possible isomeric configurations, designated as a trans configuration for the purposes of analysis. Here also, Rtc depends on the initial torsional orientation. Analysis of wavepacket density and the time constants for formation of product density indicate that that the contributing mechanisms range from direct, concerted conrotatorymotion to more statistical behavior. A ‘Boltzmann’ average at 695 K of theratio of ‘double’ to ‘single’ rotations, k12/k1, results in k12/k1=2Rtc=2.2. Wavepacket density is shown to orient preferentially along the conrotatory and disrotatory pathways rather than the higher energy single rotation(cis/trans conversion) pathway.


References

  1. J. E. Baldwin, in The Chemistry of the Cyclopropyl Group, ed. Z. Rappoport, Wiley, Chichester, 1995, vol. 2, pp. 469–494 Search PubMed; J. A. Berson, Science, 1994, 266, 1338 Search PubMed; G. Boche and H. M. Walborksy, Cyclopropane Derived Reactive Intermediates, Wiley, Chichester, 1990 CrossRef CAS; B. K. Carpenter, in The Chemistry of the Cyclopropyl Group, ed. Z. Rappoport, Wiley, Chichester, 1985, pt. 2, pp. 1027–1082 CrossRef CAS; W. T. Borden, in Reactive Intermediates, ed. M. Jones and R. A. Moss, Wiley, New York, 1985, vol. 3, pp. 151–188; 1981, vol. 2, pp. 175–209 CrossRef CAS.
  2. C. Doubleday, Jr., J. Phys. Chem., 1996, 100, 3520 CrossRef CAS; C. Doubleday, Jr., J. W. McIver, Jr. and M. Page, J. Phys. Chem., 1988, 92, 4367 CrossRef.
  3. (a) S. J. Getty, E. R. Davidson and W. T. Borden, J. Am. Chem. Soc., 1992, 114, 2085 CrossRef CAS; (b) W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 1980, 102, 5409 CrossRef CAS.
  4. Y. Yamaguchi, H. F. Schaefer III and J. E. Baldwin, Chem. Phys. Lett., 1991, 185, 143 CrossRef CAS (b) J. E. Baldwin, Y. Yamaguchi and H. F. Schaefer III, J. Phys. Chem., 1994, 98, 7513 Search PubMed; J. E. Baldwin, T. B. Freedman, Y. Yamaguchi and H. F. Schaefer III, J. Am. Chem. Soc., 1996, 118, 10934 CrossRef CAS.
  5. F. T. Smith, J. Chem. Phys., 1958, 29, 235 CAS; J. Kollmar, J. Am. Chem. Soc., 1973, 95, 966 CrossRef.
  6. R. J. Hoffmann, J. Am. Chem. Soc., 1968, 90, 1475 CrossRef CAS.
  7. S. W. Benson, J. Chem. Phys., 1961, 34, 521 CAS; H. J. O'Neal and S. W. Benson, J. Chem. Phys., 1968, 72, 1866 CAS.
  8. Of course, any of the three carbon-carbon bonds can break.
  9. J. A. Berson and L. D. Pedersen, J. Am. Chem. Soc., 1975, 97, 238 CrossRef; J. A. Berson, L. D. Pedersen and B. K. Carpenter, J. Am. Chem. Soc., 1976, 98, 122 CrossRef CAS.
  10. S. J. Cianciosi, N. Ragunathan, T. B. Freedman, L. A. Nafie, D. K. Lewis, D. A. Glenar and J. E. Baldwin, J. Am. Chem. Soc., 1991, 113, 1864 CrossRef CAS; J. E. Baldwin, S. J. Cianciosi, D. A. Glenar, G. J. Hoffman, I. Wu and D. K. Lewis, J. Am. Chem. Soc., 1992, 114, 9408 CrossRef CAS.
  11. (a) C. Doubleday, Jr., K. Bolton, G. H. Peslherbe and W. L. Hase, J. Am. Chem. Soc., 1996, 118, 9922 CrossRef CAS; (b) C. Doubleday, Jr., K. Bolton and W. L. Hase, J. Am. Chem. Soc., 1997, 119, 5251 CrossRef CAS; (c) K. Bolton, W. L. Hase and C. Doubleday, Jr., Ber. Bunsen-Ges. Phys. Chem., 1997, 101, 414 CAS; (d) C. Doubleday, Jr., K. Bolton and W. L. Hase, J. Phys. Chem. A, 1998, 102, 3648 CrossRef CAS.
  12. D. A. Hrovat, S. Fang, W. T. Borden and B. K. Carpenter, J. Am. Chem. Soc., 1997, 119, 5253 CrossRef CAS.
  13. X. Chapuisat and Y. Jean, J. Am. Chem. Soc., 1975, 97, 6325 CrossRef CAS.
  14. E. M. Goldfield, unpublished work.
  15. J. J. P. Stewart, MOPAC 7.0, A General Molecular Orbital Package, Quantum Chem. Program Exchange, 1993, 455 Search PubMed; J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 Search PubMed.
  16. M. J. S. Dewar, J. A. Hashmall and C. G. Venie, J. Am. Chem. Soc., 1968, 90, 1953 CAS.
  17. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1895, 107, 3902 Search PubMed.
  18. D. A. Hrovat and W. T. Borden, personal communication.
  19. Mathematica, Wolfram Research, http://www.wolfram.com Search PubMed.
  20. J. E. Hadder and J. H. Frederick, J. Chem. Phys., 1992, 97, 3500 CrossRef CAS.
  21. B. Podolsky, Phys. Rev., 1928, 32, 812 CrossRef.
  22. D. Kosloff and R. Kosloff, J. Comput. Phys., 1983, 52, 35 CrossRef CAS.
  23. S. K. Gray and D. E. Manolopoulos, J. Chem. Phys., 1996, 104, 7099 CrossRef CAS.
  24. E. M. Goldfield and S. K. Gray, J. Chem. Soc., Faraday Trans., 1997, 93, 909 RSC; E. M. Goldfield and S. K. Gray, Chem. Phys. Lett., 1997, 276, 1 CrossRef CAS; A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys., 1998, 108, 5404 CrossRef CAS.
  25. P. Pernot and W. A. Lester, Jr., Int. J. Quantum Chem., 1991, 40, 577 CAS see also, R. Heather and H. Metiu, J. Chem. Phys., 1987, 86, 5009 Search PubMed.
  26. D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys., 1994, 101, 3671 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.