Separated grain size fractions of presolar diamonds from Efremovka Insight into their origin from nitrogen, carbon and noble gas isotope data

(Note: The full text of this document is currently only available in the PDF Version )

A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova, I. P. Wright and C. T. Pillinger


Abstract

The concentrations and isotopic compositions of carbon, nitrogen and noble gases have been determined simultaneously in different size fractions of nanometre-sized presolar diamonds isolated from the Efremovka CV3 chondrite. The fractions were prepared using ultracentrifugation; four differentfractions were recovered, the finest and coarsest end members being ca. 2and 4 nm in size, respectively. The noble gases decrease in concentration with grain size, which strongly suggests that these species were implanted into the diamonds. To explain this effect we postulate that irradiating ions have sufficient energy to pass completely through the smaller diamond grains without being captured. Thus, it is likely that the crystals were in free space when they were irradiated. However, it is certain that implantation of noble gases did not take place in a single event, since variations in noble gas concentrations vs. grain size do not follow the expected sequence, and there are other unconformities. In contrast to the noble gas patterns, nitrogen concentrations show only small variations with grain size, indicating a completely different mechanism of introduction into the diamonds. Rather than implantation, it is considered that most nitrogen was bonded into the mineral lattice at the time and site of formation. Nevertheless, it is envisaged that some nitrogen, and even carbon, implantation takes place and if this occurred from a type II supernova source it could have an effect on isotopic composition because the tiny diamond contains so few atoms. We note in this respect that the diamond having the highest noble gas abundances i.e. the most irradiated samples, are richest in the light isotopes of C and N. Taken together, the variations in noble gas concentrations with grain size, the relative constancy of nitrogen content, and the variations in isotopic compositions of noble gases, nitrogen and carbon requires a complex irradiation history for the diamonds and/or several different diamond populations.


References

  1. P. K. Swart, M. M. Grady, C. T. Pillinger, R. S. Lewis and E. Anders, Science, 1983, 220, 406 CAS.
  2. R. S. Lewis, E. Anders, I. P. Wright, S. J. Norris and C. T. Pillinger, Nature (London), 1983, 305, 767 CAS.
  3. R. S. Lewis, E. Anders and R. T. Draine, Nature (London), 1989, 339, 117 CAS.
  4. S. S. Russell, J. W. Arden and C. T. Pillinger, Meteoritics Planet. Sci., 1996, 31, 343 Search PubMed.
  5. R. S. Lewis, M. Tang, J. F. Wacker, E. Anders and E. Steel, Nature (London), 1987, 326, 160 CrossRef CAS.
  6. S. Amari, R. S. Lewis and E. Anders, Geochim. Cosmochim. Acta, 1994, 58, 459 CAS.
  7. C. T. Pillinger and S. S. Russell, J. Chem. Soc., Faraday Trans., 1993, 89, 2297 RSC.
  8. S. Amari, E. Anders, A. Virag and E. Zinner, Nature (London), 1990, 345, 238 CrossRef CAS.
  9. G. R. Huss, I. D. Hutcheon, G. J. Wasserburg and J. Stone, Lunar Planet. Sci., 1992, XXIII, 563 Search PubMed.
  10. L. R. Nittler and R. Cowsik, Meteoritics Planet. Sci., 1996, 31, A100 Search PubMed.
  11. D. D. Clayton, Astrophys. J., 1989, 340, 613 CrossRef CAS.
  12. W. M. Howard, B. S. Meyer and D. D. Clayton, Meteoritics, 1992, 27, 404 Search PubMed.
  13. D. D. Clayton, B. S. Meyer, C. I. Sanderson, S. S. Russell and C. T. Pillinger, Astrophys. J., 1995, 447, 894 CrossRef CAS.
  14. G. R. Huss and R. S. Lewis, Meteoritics, 1994, 29, 791 Search PubMed.
  15. A. B. Verchovsky, S. S. Russell and C. T. Pillinger, Lunar Planet. Sci., 1993, XXIV, 1461 Search PubMed.
  16. R. S. Lewis, Lunar Planet. Sci., 1994, XXV, 793 Search PubMed.
  17. S. S. Russell, J. W. Arden and C. T. Pillinger, Science, 1991, 254, 1188 CAS.
  18. R. S. Lewis, B. Srinivasan and E. Anders, Science, 1975, 190, 1251 CAS.
  19. M. Tang, R. S. Lewis, E. Anders, M. M. Grady, I. P. Wright and C. T. Pillinger, Geochim. Cosmochim. Acta, 1988, 52, 1221 CrossRef.
  20. R. S. Lewis, G. R. Huss, E. Anders, Y.-G. Liu and R. A. Schmitt, Meteoritics, 1991, 26, 363 Search PubMed.
  21. A. B. Verchovsky and C. T. Pillinger, Meteoritics, 1994, 29, 543 Search PubMed.
  22. I. P. Wright and C. T. Pillinger, in New Frontiers in Stable Isotopic Research: Laser Probes, Ion Probes and Small Sample Analysis, ed. W. C. Shanks and R. E. Criss, 1989, U.S. Geological Bulletin 1890, p. 9 Search PubMed.
  23. I. P. Wright, S. R. Boyd, I. A. Franchi and C. T. Pillinger, J. Phys. E., 1988, 21, 865 CrossRef CAS.
  24. A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova and C. T. Pillinger, Meteoritics Planet. Sci., 1997, 32, A131 Search PubMed.
  25. R. D. Ash, J. W. Arden, I. P. Wright, M. M. Grady and C. T. Pillinger, Nature (London), 1988, 336, 228 CAS.
  26. A. B. Verchovsky, G. R. Huss and C. T. Pillinger, Meteoritics, 1994, 29, 544 Search PubMed.
  27. D. A. Shelkov, A. B. Verchovsky, H. J. Milledge and C. T. Pillinger, Chem. Geol., 1998, 149, 109 CrossRef CAS.
  28. R. S. Lewis, S. Amari and E. Anders, Nature (London), 1990, 348, 293 CAS.
  29. A. J. T. Jull and C. T. Pillinger, Proc. Lunar. Sci. Conf. 8th, Pergamon Press, Oxford, 1977p. 3817 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.