Molecular evolution in planet-forming circumstellar disks

(Note: The full text of this document is currently only available in the PDF Version )

Y. Aikawa, T. Umebayashi, T. Nakano and S. Miyama


Abstract

We have investigated the evolution of molecular abundance in circumstellar disks around young low-mass stars, which are considered to be the formation sites of planetary systems. Adopting the standard accretion disk model, we investigated molecular evolution mainly in the accretion phase. In the region of surface density less than 102 g cm-2 (distance from the star 10 AU), cosmic rays are barely attenuated, even in the midplane of the disk, and produce chemically active ions such as He+ and H3+. We found that a considerable amount of CO and N2, the initial dominant components of the disk, is transformed into CO2, CH4, NH3 and HCN through reactions with these ions. Where the temperature is low enough for these products to freeze onto grains, they are selectively ‘locked up’ and accumulate in the ice mantle. As the matter accretes towards inner warmer regions, the ice mantle evaporates. The desorbed molecules, such as CH4, are transformed into larger and less volatile molecules by reactions in the gas phase. The molecular abundance, both in the gas phase and in the ice mantle, depends crucially on the temperature and thus varies significantly with the distance from the central star. If the ionization rate and the grain size in the disk are the same as those in molecular clouds, the timescale of the molecular evolution, in which CO and N2 are transformed into other molecules is, ca. 106 years, slightly less than the life time of the disk. The timescale of molecular evolution is less for higher ionization rates and greater for lower ionization rates or larger grain size. We have compared our results with the molecular composition in comets, the most primitive bodies in our solar system. The molecular abundance derived from our model reproduces the coexistence of oxidized ice and reduced ice, as observed in comets. Our model also suggests that comets formed in different regions of the disk will have different molecular compositions.


References

  1. C. R. O'Dell and W. Zheng, Astrophys. J., 1994, 436, 194 CrossRef.
  2. A. I. Sargent and S. V. W. Beckwith, Astrophys. Space Sci., 1994, 212, 181 CAS.
  3. M. F. Skrutskie, R. L. Snell, K. M. Strom, S. E. Strom, S. Edwards, Y. Fukui, A. Mizuno, M. Hayashi and N. Ohashi, Astrophys. J., 1993, 409, 422 CrossRef CAS.
  4. S. Guilloteau and A. Dutrey, Astron. Astrophys., 1994, 291, L23 Search PubMed.
  5. T. Handa, S. M. Miyama, T. Yamashita, T. Omodaka, Y. Kitamura, M. Hayashi, T. Onishi, R. L. Snell, S. Strom, K. Strom, M. F. Skrutskie, S. Edwards, N. Ohashi, K. Sunada, M. Saito, Y. Fukui, A. Mizuno, J. Watanabe and H. Kataza, Astrophys. J., 1995, 449, 894 CrossRef CAS.
  6. A. Dutrey, S. Guilloteau and M. Guélin, Astron. Astrophys., 1997, 317, L55 Search PubMed.
  7. R. Kawabe, M. Ishiguro, T. Omodaka, Y. Kitamura and S. M. Miyama, Astrophys. J., 1993, 404, L63.
  8. D. W. Koerner, A. I. Sargent and S. V. W. Beckwith, Icarus, 1993, 106, 2 CrossRef.
  9. A. Dutrey, S. Guilloteau and M. Simon, Astron. Astrophys., 1994, 286, 149 Search PubMed.
  10. D. W. Koerner and A. I. Sargent, Astron. J., 1995, 109, 2138 CrossRef CAS.
  11. M. Saito, R. Kawabe, M. Ishiguru, S. M. Miyama, M. Hayashi, T. Handa, Y. Kitamura and T. Omodaka, Astrophys. J., 1995, 453, 384 CrossRef CAS.
  12. J. S. Lewis, Science, 1974, 186, 440 CAS.
  13. J. S. Lewis, S. S. Barshay and B. Noyes, Icarus, 1979, 37, 190 CrossRef CAS.
  14. R. G. Prinn, in Protostars and Planets III, ed. E. H. Levy and J. I. Lunine, University of Arizona Press, 1993, Tucson1005 Search PubMed.
  15. T. Umebayashi and T. Nakano, Publ. Astron. Soc. Jpn., 1981, 33, 617 Search PubMed.
  16. D. Lynden-Bell and J. E. Pringle, Mon. Not. R. Astron. Soc., 1974, 168, 603.
  17. C. Bertout, G. Basri and J. Bouvier, Astrophys. J., 1988, 330, 350 CrossRef CAS.
  18. J. Frank, A. King and D. Raine, in Accretion Power in Astrophysics, Cambridge University Press, 1992, p. 77 Search PubMed.
  19. S. A. Balbus and J. F. Hawley, Astrophys. J., 1991, 376, 214 CrossRef.
  20. J. F. Hawley and S. A. Balbus, Astrophys. J., 1991, 376, 223 CrossRef.
  21. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys., 1973, 24, 37 Search PubMed.
  22. G. Basri and C. Bertout, in ref. 14, p. 543.
  23. A. G. W. Cameron, Space Sci. Rev., 1973, 15, 121 CAS.
  24. S. P. Ruden and J. B. Pollack, Astrophys. J., 1991, 375, 740 CrossRef.
  25. E. Krügel and R. Siebenmorgen, Astron. Astrophys., 1994, 288, 929 Search PubMed.
  26. T. Kusaka, T. Nakano and Hayashi, Prog. Theor. Phys., 1970, 44, 1580 Search PubMed.
  27. T. J. Millar, J. M. C. Rawlings, A. Bennett, P. D. Brown and S. B. Charnley, Astron. Astrophys. Suppl. Ser., 1991, 87, 585 Search PubMed.
  28. P. R. A. Farquhar and T. J. Millar, CCP7 Newsletter, 1993, 18, 6 Search PubMed.
  29. G. Brasseur and S. Solomon, in Aeronomy of the Middle Atmosphere, ed. G. Brasseur and S. Solomon, Reidel, Dordrecht, 1986 Search PubMed.
  30. S. Lepp, in The Astrochemistry of Cosmic Phenomena, ed. P. D. Singh, Kluwer, Dordrecht, 1992, p. 471 Search PubMed.
  31. D. A. Williams, in Dust and Chemistry in Astronomy, ed. T. J. Millar and D. A. Williams, Institute of Physics, London, 1993, p. 143 Search PubMed.
  32. Y. Yamamoto, N. Nakagawa and Y. Fukui, Astron. Astrophys., 1983, 122, 171 Search PubMed.
  33. S. A. Sandford and L. J. Allamandola, Astrophys. J., 1993, 417, 815 CrossRef CAS.
  34. T. I. Hasegwa and E. Herbst, Mon. Not. R. Astron. Soc., 1993, 261, 83 CAS.
  35. D. C. Morton, Astrophys. J., 1974, 193, L35 CAS.
  36. K. M. Strom, S. E. Strom, S. Edwards, S. Cabrit and M. F. Skrutskie, Astron. J., 1989, 97, 1451 CrossRef.
  37. A. Z. Dolginov and T. F. Stepinski, Astrophys. J., 1994, 427, 377 CrossRef CAS.
  38. D. D. Clayton, Nature (London), 1985, 315, 633 CrossRef.
  39. J. S. Mathis, W. Rumpl and K. H. Nordsieck, Astrophys. J., 1977, 217, 425 CrossRef CAS.
  40. S. J. Weidenschilling and J. N. Cuzzi, in ref. 14, p. 1031.
  41. A. Chokshi, A. G. G. M. Tielens and D. Hollenbach, Astrophys. J., 1993, 407, 806 CrossRef.
  42. Y. Nakagawa, K. Nakazawa and C. Hayashi, Icarus, 1981, 45, 517 CrossRef.
  43. M. J. Mumma, P. R. Weissmen and S. A. Stern, in ref. 14, p. 1177.
  44. H. A. Weaver, P. D. Feldman, M. F. A'Hearn, C. Arpigny, J. C. Brandt, C. E. Randall, M. A. Disanti, M. J. Mumma, N. Dello Russo, D. X. Xie, M. Fomenkova and K. Magee-Sauer, IAU Circular, 1996, 6374 Search PubMed.
  45. D. Lis, J. Keene, K. Young, T. Phillips, E. Bergin, P. Goldsmith, D. Bockelee-Morvan, J. Crovisier, D. Gautier, A. Wootten, D. Despois, T. Owen, J. Geophys, B. Butler, P. Palmer, D. Yeomans and D. W. E. Green, IAU Circular, 1996, 6362 Search PubMed.
  46. T. Yamamoto, in Comets in the Post-Halley Era, ed. R. L. Newburn, Jr. et al., Kluwer Academic, Dordrecht, 1991, 361 Search PubMed.
  47. R. G. Prinn and Fegley, Jr., in Origin and Evolution of Planetary and Satellite Atmospheres, ed. S. K. Atreya, J. B. Pollack, and M. S. Matthews, University of Arizona Press, Tucson, 1989, 78 Search PubMed.
  48. A. Bar-Nun, G. Hertman, D. Laufer and M. L. Rappaport, Icarus, 1985, 63, 317 CrossRef CAS.
  49. M. F. A'Hearn, R. L. Mills, D. G. Schleicher, D. J. Osip and P. V. Birch, Icarus, 1995, 118, 223 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.