Opacity of TiO from a coupled electronic state calculation parametrized by abinitio and experimental data

(Note: The full text of this document is currently only available in the PDF Version )

David W. Schwenke


We have carried out calculations of ro-vibrational energy levels of the 13 lowest electronic states of TiO. The dominant couplings between the various states are included, with the coupling parameters and potential parameters optimized to match experimental energy levels. We have also performed abinitio electronic structure calculations of the spin–orbit and rotation–orbit couplings, to verify that the physical results are obtained from the optimization. Our wavefunctions were used to predict the intensities of both well characterized and unobserved forbidden bands.


  1. U. G. Jørgensen, Astron. Astrophys., 1994, 284, 179 Search PubMed.
  2. C. Amiot, E. Azaroual, P. Luc and R. Vetter, J. Chem. Phys., 1995, 102, 4375 CrossRef CAS.
  3. L. A. Kaledin, J. E. McCord and M. C. Heaven, J. Mol. Spectrosc., 1995, 173, 499 CrossRef CAS.
  4. C. Amiot, M. Cheikh, P. Luc and R. Vetter, J. Mol. Spectrosc., 1996, 179, 159 CrossRef CAS.
  5. R. S. Ram, P. F. Bernath and L. Wallace, Astrophys. J. Supp., 1996, 107, 443 Search PubMed.
  6. M. Barnes, A. J. Merer and G. F. Metha, J. Mol. Spectrosc., 1997, 181, 180 CrossRef CAS.
  7. S. R. Langhoff, Astrophys. J., 1997, 481, 1007 CrossRef CAS.
  8. B. Plez, Astron. Astrophys., submitted Search PubMed.
  9. J. G. Phillips, Astrophys. J. Supp., 1973, 26, 313 Search PubMed.
  10. D. C. Galehouse, J. W. Brault and S. P. Davis, Astrophys. J. Supp., 1980, 42, 241 Search PubMed.
  11. MOLPRO 96 is a package of ab initio programs written by H.-J. Werner, and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. Peterson, R. Pitzer, A. J. Stone, and P. R. Taylor.
  12. T. Helgaker, P. R. Taylor, K. Ruud, O. Vahtras and H. Koch, “HERMIT, a molecular integral program”; H. J. Jensen and H. Agren, “SIRIUS, an MCSCF program”; O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, T. Helgaker and J. Olsen, J. Chem. Phys., 1992, 96, 2118 Search PubMed.
  13. S. Weissman, J. T. Vanderslice and R. Battino, J. Chem. Phys., 1963, 39, 2226 CAS.
  14. T. Gustavsson, C. Amiot and J. Vergès, J. Mol. Spectrosc., 1991, 145, 56 CAS.
  15. W. H. Hocking, M. C. L. Gerry and A. J. Merer, Can. J. Phys., 1979, 57, 54 CAS.
  16. B. Simard and P. A. Hackett, J. Mol. Spectrosc., 1991, 148, 128 CAS.
  17. G. R. Brandes and D. C. Galehouse, J. Mol. Spectrosc., 1985, 109, 345 CAS.
  18. C. Linton, J. Mol. Spectrosc., 1974, 50, 235 CAS.
  19. J. G. Phillips and S. P. Davis, TiO band analyses, 4100–9000 Å Dept. of Astronomy and Physics, Univ. of California, Berkeley.
  20. I. Kovács, J. Mol. Spectrosc., 1965, 18, 229 CAS.
  21. R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London, 2nd edn., 1992 Search PubMed.
  22. C. Linton and H. P. Broida, J. Mol. Spectrosc., 1977, 64, 382 CAS.
  23. J. G. Phillips and S. P. Davis, Astrophys. J., 1972, 175, 583 CrossRef CAS.
  24. S. R. Langhoff, M. L. Sink, R. H. Pritchard and C. W. Kern, J. Mol. Spectrosc., 1982, 96, 200 CAS.