Excitation processes for the emission of the unidentified IR bands

(Note: The full text of this document is currently only available in the PDF Version )

Olivier Guillois, Gilles Ledoux, Irène Nenner, Renaud Papoular and Ce′cile Reynaud


Abstract

To our knowledge, no individual polycyclic aromatic hydrocarbon (PAH) molecule has yet been shown to carry all the ubiquitous and closely correlated unidentified IR (UIR) bands. More generally, no IR space observatory (ISO) instrument was able to split these bands into the narrower signatures expected from molecules. Again, the Japanese IRTS satellite has shown that the near-IR CH-stretching band observed near the galactic plane carries an important aliphatic component alien to aromatic molecules. On the other hand, a number of solid-state, disordered, more or less hydrogenated, carbonaceous materials have been shown to carry all the UIR bands. Moreover, their emission spectrum, computed under thermal equilibrium with typical circumstellar radiation fields, was shown to fit, satisfactorily and in detail, the observed near- and mid-IR spectra of a number of planetary nebulae (PNe) and proto-planetary nebulae (PPNe). However, the interstellar radiation field (ISRF) is not strong enough to heat this solid-state dust to the equilibrium temperatures required for emission observed from the galactic plane and reflection nebulae. Even stochastic heating is insufficient in these cases because nanometric grains are too small to retain the desirable optical properties of the bulk.

One way out of this deadlock is to look for other excitation mechanisms. Noting that spatial maxima of UIR emission usually occur in photodissociation regions between ionized and molecular gas maxima, where atomic H is most abundant, we have set up to study the interactions of atomic hydrogen with solid-state carbon surfaces. We consider, in particular, a mechanism in which, upon collision with a grain, the potential energy of recombination carried by an atom is delivered to one of the functional groups which will emit a UIR band. Such an IR chemiluminescence is found to be possible, in principle. A laboratory experiment dedicated to the quest of IR chemiluminescence has been built and is described.


References

  1. F. Hoyle and N. Wickramasinghe, in The Theory of Cosmic Grains, Kluwer, Dordrecht, 1991 Search PubMed.
  2. J. L. Puget, IAU Conference, Kyoto, August 1997, to appear in Highlights of Astronomy, 1998 Search PubMed.
  3. M. Tanaka, T. Matsumoto, H. Murakanu, M. Kawada, M. Noda and S. Matsuura, Publ. Astron. Soc. Jpn., 1996, 48, L53 Search PubMed.
  4. S. Sandford, Y. Pendleton and L. Allamandola, Astrophys. J., 1995, 440, 697 CrossRef CAS.
  5. K. Sellgren, L. Luan and M. Werner, Astrophys. J., 1990, 359, 384 CrossRef.
  6. K. Uchida, K. Sellgren and M. Werner, Astrophys. J. Lett., in press Search PubMed.
  7. O. Guillois, I. Nenner, R. Papoular and C. Reynaud, Astrophys. J., 1996, 464, 810 CrossRef CAS.
  8. R. Laurejs et al., Astron. Astrophys., 1996, 315, L313 Search PubMed and other examples in the same issue.
  9. W. Schutte, A. Tielens and L. Allamandola, Astrophys. J., 1995, 415, 397.
  10. P. Roche and D. Aitken, Mon. Not. R. Astron. Soc., 1989, 236, 485 CAS.
  11. T. Onaka, I. Yamamura, T. Tanabé, T. Roellig and L. Yuen, Publ. Astron. Soc. Jpn., 1996, 48, L59 Search PubMed.
  12. K. Imamura and Y. Sofue, Astron. Astrophys., 1997, 319, 1 Search PubMed.
  13. D. Hollenbach and A. Tielens, Annu. Rev. Astron. Astrophys., 1997, 35, 179 CrossRef CAS.
  14. O. Goldschmidt and A. Sternberg, Astrophys. J., 1995, 439, 256.
  15. F. Bertoldi and B. Draine, Astrophys. J., 1996, 458, 222 CrossRef.
  16. A. Tielens, M. Meixner, P. van der Werf, J. Bregman, J. Tauber, J. Stutzki and D. Rank, Science, 1993, 262, 86 CAS.
  17. J. Bregman, K. Larson, D. Rank and P. Temi, Astrophys. J., 1994, 423, 326 CrossRef CAS.
  18. P. van der Werf, J. Stutzky, A. Sternberg and A. Krabbe, Astron. Astrophys., 1996, 313, 633 Search PubMed.
  19. G. Sloan, J. Bregman, T. Geballe, L. Allamandola and C. Woodward, Astrophys. J., 1997, 474, 735 CrossRef CAS.
  20. B. Draine, Astrophys. J. Suppl., 1978, 36, 595 CrossRef CAS; K. Lang, Astrophysical Formulae, 1990 Search PubMed.
  21. A. Dalgarno and T. Stephens, Astrophys. J. Lett., 1970, 160, L107 CrossRef CAS.
  22. M. Jura, Astrophys. J., 1974, 191, 375 CrossRef CAS.
  23. F. Boulanger, Conference on Gas–surface and gas–aggregate reactivities, 1997, St-Michell'Observatoire; also personal communication.
  24. D. Hollenbach, M. Werner and E. Salpeter, Astrophys. J., 1971, 163, 165 CrossRef CAS.
  25. M. Jura, Astrophys. J., 1975, 197, 581 CrossRef CAS.
  26. C. Arumainayagam and R. Madix, Progr. Surf. Sci., 1991, 38, 1 Search PubMed.
  27. A. Winkler and K. Rendulik, Int. Rev. Phys. Chem., 1992, 11, 101 CAS.
  28. S. Lombardo and A. Bell, Surf. Sci. Rep., 1991, 13, 1 CrossRef CAS.
  29. Dynamics of Gas–Surface Interactions, ed. C. Rettner and M. Ashfold, Royal Society of Chemistry, Cambridge, 1991 Search PubMed.
  30. C. Rettner, D. Auerbach, J. Tully and A. Kleyn, J. Chem. Phys., 1996, 100, 13021 CrossRef CAS.
  31. R. Masel, Principles of Adsorption and Reaction on Solid Surfaces, Wiley, New York, 1996 Search PubMed.
  32. H. Wise and B. Wood, Adv. Atom. Mol. Phys., 1963, 3, 291 Search PubMed.
  33. A. De Pristo, in ref. 29, p. 47.
  34. J. Kuppers, Surf. Sci. Rep., 1995, 22, 249 CrossRef.
  35. T. Wolkenstein, Electronic Processes on Semi-conductor Surfaces during Chemisorption, Consultants Bureau, New York, 1991 Search PubMed.
  36. J. C. Polanyi and H. Rieley, in ref. 29, p. 329.
  37. C. Rettner, J. Chem. Phys., 1994, 101, 1529 CrossRef CAS.
  38. C. Rettner and D. Auerbach, J. Chem. Phys., 1996, 104, 2732 CrossRef CAS.
  39. J. Harris and B. Kasemo, Surf. Sci., 1981, 105, L281 CrossRef CAS.
  40. L. Spitzer Jr., Physical Processes in the Interstellar Medium, Wiley, New York, 1978, p. 125 Search PubMed.
  41. A. B. King and H. Wise, J. Phys. Chem., 1963, 67, 1163 CAS.
  42. M. Balooch and D. Olander, J. Chem. Phys., 1975, 63, 4772 CrossRef CAS.
  43. S. Dushman, Scientific Foundations of Vacuum Science and Technology, J. Wiley, New York, 2nd edn., 1966 Search PubMed.
  44. V. Pirronello, Chi Liu, L. Shen and G. Vidali, Astrophys. J. Lett., 1997, 475, L69 CrossRef CAS.
  45. H. Sugai, S. Yoshida and H. Toyoda, Appl. Phys. Lett., 1989, 54, 1412 CrossRef CAS.
  46. S. J. Harris and A. Weiner, J. Appl. Phys., 1993, 74, 1022 CrossRef CAS.
  47. R. Gat and J. Angus, J. Appl. Phys., 1993, 74, 5981 CrossRef CAS.
  48. C. Lutterloh, A. Schenk, J. Biener, B. Winter and J. Kuppers, Surf. Sci., 1994, 316, L1039 CrossRef CAS.
  49. W. Smith, J. Chem. Phys., 1943, 11, 110 CAS.
  50. E. Vietzke and V. Philipps, Fusion Technol., 1989, 15, 108 Search PubMed.
  51. R. Rye, Surf. Sci., 1977, 69, 653 CrossRef CAS.
  52. K. Sancier, W. Fredericks and H. Wise, J. Chem. Phys., 1959, 30, 1355 CAS.
  53. K. Sancier, W. Fredericks and H. Wise, J. Chem. Phys., 1962, 37, 854; 860 CAS.
  54. V. Shatrov, V. Gordon, A. Ponomarev and V. Tal'roze, Doklady Akad. Nauka SSSR(Phys. Chem.), 1971, 197, 400 Search PubMed.
  55. V. Styrov, ZH. ETF Pisma Red., 1972, 15, 242 Search PubMed.
  56. R. Kucher, I. Opeida and I. Dumbai, Khimiya Tver. Topl., 1975, 9, 53 Search PubMed.
  57. V. Styrov, Izv. Akad. Nauka SSSR, 1987, 51, 524 Search PubMed.
  58. V. Grankin, Zh. Prikl. Spek., 1996, 63, 444 Search PubMed.
  59. L. Konig, I. Rabin, W. Schulze and G. Ertl, Science, 1996, 274, 1353 CrossRef.
  60. J. M. Mestdagh, M. A. Gaveau, C. Gee, O. Sublemontier and J. P. Visticot, Int. Rev. Chem. Phys., 1997, 16, 215 Search PubMed.
  61. R. Cavanagh, E. Heilweil and J. Stephenson, Surf. Sci., 1994, 299/300, 643 CrossRef.
  62. E. Heilweil, M. Casassa, R. Cavanagh and J. Stephenson, Annu. Rev. Phys. Chem., 1989, 40, 143 CrossRef CAS.
  63. K. Koch, Y. Yang and F. Luty, Phys. Rev. B, 1984, 29, 5840 CrossRef CAS.
  64. Y. Yang, W. v. d. Osten and F. Luty, Phys. Rev. B, 1985, 32, 2724 CrossRef CAS.
  65. H. C. Chang and G. Ewing, J. Chem. Phys., 1990, 94, 7635 CAS.
  66. G. Ewing, Acc. Chem. Res., 1992, 25, 292 CrossRef CAS.
  67. I. Pocsic, Physica A, 1993, 201, 34 CrossRef.
  68. R. J. Bell, Rep. Progr. Phys., 1972, 35, 1315 Search PubMed; P. Dean, Rev. Mod. Phys., 1972, 44, 127 CrossRef CAS; T. Nakayama, K. Yakubo and R. Orbach, Rev. Mod. Phys., 1994, 66, 381 CrossRef CAS.
  69. D. Payton and W. Visscher, Phys. Rev., 1967, 154, 802 Search PubMed; 156, 1032.
  70. U. Buchenau, C. Pecarroman, R. Zorn and B. Frick, Phys. Rev. Lett., 1996, 77, 659 CrossRef CAS.
  71. D. van Krevelen, Coal, Elsevier, Amsterdam, 3rd edn., 1993 Search PubMed.
  72. G. Korzeniewski, E. Hood and H. Metiu, J. Vac. Sci. Technol., 1982, 20, 594 Search PubMed.
  73. Porous Silicon, ed. Z. Feng and R. Tsu, World Science, Singapore, 1994 Search PubMed; Porous Silicon: Science and Technology, ed. J. C. Vial and J. Derrien, Springer, Berlin, 1995 Search PubMed.
  74. The Physics of Hydrogenated Amorphous Silicon (II), ed. J. Joannopoulos and G. Lucovski, Springer Verlag, Berlin, 1984, p. 304 Search PubMed.
  75. I. Solomon, R. Wehrsphon, J. N. Chalaziel and F. Ozanam, in Amorphous and Microcrystalline Semiconductors, ICAMS 17, Budapest, 1997 Search PubMed.
  76. A. Radzig and B. Smirnov, Reference Data on Atoms, Molecules and Ions, Springer Series Chem. Phys. 31, Springer, Berlin, 1985 Search PubMed.
  77. J. Slevin and W. Sterling, Rev. Sci. Instrum., 1981, 52, 1780 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.