Reaction of tertiary phosphine selenides, R3PSe (R = Me2N, Et2N or C6H11), with dibromine. The first reported examples of 1∶1 addition

(Note: The full text of this document is currently only available in the PDF Version )

Stephen M. Godfrey, Sheena L. Jackson, Charles A. McAuliffe and Robin G. Pritchard


Abstract

The R3PSeBr2 compounds (R = Me2N, Et2N or C6H11) have been prepared and characterised by 31P-{H} and infrared spectroscopy. The compounds R3PSeBr2 (R = Me2N or C6H11) have also been crystallographically characterised. In contrast to the analogous diiodo compounds R3PSeI2 (which have a molecular Ψ-tetrahedral charge-transfer structure, R3PSeI–I), the R3PSeBr2 compounds adopt Ψ-trigonal bipyramids at the selenium centre (taking account of the stereochemically active lone pairs). The crystal structure of (Me2N)3PSeBr2 exhibits very different d[hair space](Se–Br), 2.602(2) and 2.544(2) Å. This phenomenon is reasoned to be due to the fact that both staggered and eclipsed Se–Br bonds are observed in the structure. The crystal structure of (C6H11)3PSeBr2 shows two crystallographically independent molecules in the asymmetric unit, d[hair space](Se–Br) being identical in one molecule, 2.568(3) and 2.566(3) Å, but significantly different in the second molecule, 2.591(3) and 2.556(3) Å. A possible explanation for this is the presence of a close non-bonded Br[hair space][hair space]· · ·[hair space][hair space]Br contact in this second (C6H11)3PSeBr2 molecule. The compounds R3PSeBr2 (R = Me2N or C6H11) both exhibit P–Se bonds typical of those expected for single bonds, 2.262(2) and 2.263(2) average, respectively, again in contrast to the analogous diiodo compounds, R3PSeI2, in which significant P–Se double bond character was retained. The 31P-{H} NMR and infrared spectroscopic data for R3PSeBr2 (R = Me2N, Et2N or C6H11) are discussed with respect to those of the parent tertiary phosphine selenide, R3PSe.


References

  1. R. A. Zingaro and E. A. Meyers, Inorg. Chem., 1962, 4, 771 CrossRef.
  2. R. A. Zingaro, Inorg. Chem., 1963, 5, 192 CrossRef.
  3. W. W. Schweikert and E. A. Meyers, J. Phys. Chem., 1968, 5, 1561 CrossRef.
  4. D. C. Apperley, N. Bricklebank, S. L. Burns, D. E. Hibb, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1998, 1289 RSC.
  5. S. M. Godfrey, S. L. Jackson, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1996, 4499 Search PubMed.
  6. N. Bricklebank, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 3873 RSC.
  7. S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and S. Sarwar, J. Chem. Soc., Dalton Trans., 1997, 1031 RSC.
  8. S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield, Chem. Commun., 1996, 2521 RSC.
  9. S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield, Chem. Commun., 1998, 921 RSC.
  10. W. Tefteller and R. A. Zingaro, Inorg. Chem., 1966, 5, 2151 CrossRef CAS; D. W. Allen and B. F. Taylor, J. Chem. Soc., Dalton Trans., 1982, 51 RSC.
  11. J. D. McCullough and G. Hamburger, J. Am. Chem. Soc., 1941, 63, 303.
  12. S. Akabori, Y. Takanohashi, S. Aoki and S. Sato, J. Chem. Soc., Perkin Trans. 1, 1991, 3121 RSC.
  13. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2A Search PubMed.
  14. International Tables For X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.3.1 Search PubMed.
  15. G. M. Sheldrick, (a) SHELXS 86, University of Göttingen, 1986; (b) SHELXL 93, University of Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.