Synthesis, structures and magnetochemistry of binuclear cobalt(II), nickel(II) and copper(II) complexes of 2,6-diformyl-4-methylphenol dioxime

(Note: The full text of this document is currently only available in the PDF Version )

Daniel Black, Alexander J. Blake, Keith P. Dancey, Andrew Harrison, Mary McPartlin, Simon Parsons, Peter A. Tasker, Gavin Whittaker and Martin Schröder


Abstract

Reaction of 2,6-diformyl- and 2,6-diacetyl-4-methylphenol with a large excess of both NH2OH·HCl and CH3CO2K in EtOH affords high yields of 2,6-diformyl-4-methylphenol dioxime (2-hydroxy-5-methylbenzenedicarbaldehyde dioxime) (H3L1) and 2,6-diacetyl-4-methylphenol dioxime (H3L2), respectively. The crystal structure of (H3L2) shows intramolecular hydrogen bonding with long-range intermolecular π-stacking interactions and an extended intermolecular hydrogen-bonding network. The binuclear complexes of CoII, NiII and CuII—[Co2(H2L1)2(MeOH)2(H2O)2]Cl2·2MeOH, [Ni2(H2L1)2(H2O)4][ClO4]2·2H2O and [Cu2(H2L1)2(ClO4)2], respectively—derived from the dioxime ligand (H3L1) have been synthesized and characterised and their single-crystal structures determined. The structure of [Co2(H2L1)2(MeOH)2(H2O)2]2+ shows each high-spin CoII to be six-co-ordinate and bound to an N2O4-donor array presented by two dioxime ligands and axially co-ordinated H2O and MeOH molecules, the dioxime ligands co-ordinating via the imino N- and phenoxy O-donors. The structure of [Ni2(H2L1)2(H2O)4]2+ shows two octahedrally co-ordinated NiII each with an N2O4 donor set similar to that in [Co2(H2L1)2(MeOH)2(H2O)2]2+ except that the co-ordination sphere of each NiII is completed by axial ligation to two H2O molecules. The structure of [Cu2(H2L1)2(ClO4)2] confirms N2O4 donation at CuII with two bidentate ClO4 anions, Cu[hair space][hair space]· · ·[hair space][hair space]O 2.51(2), 2.76(2) Å, interacting with the metal centres on either side of the planar oxime–phenolate array. In all three complexes the two dioxime ligands are monodeprotonated at the phenolic oxygen, and the oximes are linked by hydrogen bonds, which results in a pseudo-macrocyclic framework. Magnetic susceptibility measurements on the complexes over the range 2.5–340 K confirm that the complexes are antiferromagnetically coupled with values for the magnetic exchange constant J of –6.9 ± 0.1, –16.0 ± 0.6, and –452 ± 4 cm–1 for [Co2(H2L1)2(MeOH)2(H2O)2]Cl2, [Ni2(H2L1)2(H2O)4][ClO4]2 and [Cu2(H2L1)2(ClO4)2], respectively.


References

  1. Comprehensive Co-ordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 6 Search PubMed.
  2. B. McCudden, P. O'Brien and J. R. Thornback, J. Chem. Soc., Dalton Trans., 1983, 2043 RSC; Hydroxyoximes and Copper Hydrometallurgy, CRC Press, Boca Raton, FL, 1993 Search PubMed.
  3. S. O. Sommerer, B. L. Westcott, A. J. Jircitano and K. A. Abboud, Inorg. Chim. Acta, 1995, 238, 149 CrossRef CAS.
  4. C. Onindo, T. Yu. Sliva, T. Kowalik-Jankowska, I. O. Fritsky, P. Buglyo, L. D. Pettit, H. Kozlowski and T. Kiss, J. Chem. Soc., Dalton Trans., 1995, 3911 RSC.
  5. B. Mernari, F. Abraham, M. Lagrenee, M. Dillon and P. Legoll, J. Chem. Soc., Dalton Trans., 1993, 1707 RSC; F. Abraham, M. Lagrenee, S. Sueur, B. Mernari and C. Bremard, J. Chem. Soc., Dalton Trans., 1991, 1443 RSC.
  6. M. M. Aly, A. O. Baghlaf and N. S. Ganji, Polyhedron, 1985, 4, 1301 CrossRef CAS.
  7. H. Okawa, T. Tokii, Y. Muto and S. Kida, Bull. Chem. Soc. Jpn., 1973, 46, 2464 CAS.
  8. C. Krebs, M. Winter, T. Weyhermüller, E. Bill, K. Wieghardt and P. Chaudhuri, J. Chem. Soc., Chem. Commun., 1995, 1913 RSC.
  9. K. K. Nanda, A. W. Addison, N. Paterson, E. Sinn, L. K. Thompson and U. Sakaguchi, Inorg. Chem., 1998, 37, 1028 CrossRef CAS.
  10. E. V. Rybak-Akimova, D. H. Busch, P. K. Kahol, N. Pinto, N. W. Alcock and H. J. Clase, Inorg. Chem., 1997, 36, 510 CrossRef CAS.
  11. E. Buehler, J. Org. Chem., 1967, 32, 261 CrossRef CAS; E. Buehler and G. B. Brown, J. Org. Chem., 1967, 32, 265 CrossRef CAS; E. Falco and G. B. Brown, J. Med. Chem., 1968, 11, 142 CrossRef CAS.
  12. C. E. Pfluger and R. L. Harlow, Acta Crystallogr., 1964, 17, 1109 CrossRef CAS.
  13. A. Chakravorty, Coord. Chem. Rev., 1974, 13, 1 CrossRef CAS and refs. therein.
  14. W. E. Hatfield, Comments Inorg. Chem., 1981, 1, 105 CAS.
  15. A. P. Ginsberg, R. L. Martin, R. W. Brookes and R. C. Shewood, Inorg. Chem., 1972, 11, 2884 CrossRef CAS.
  16. See also, B. N. Figgis, Introduction to Ligand Fields, Wiley, New York, 1966 Search PubMed; A. P. Ginsberg and M. E. Lines, Inorg. Chem, 1972, 11, 2289 Search PubMed; R. L. Carlin and J. N. McElearney, Inorg. Chem., 1972, 11, 2291 CrossRef CAS; A. B. P. Lever, L. K. Thompson and W. M. Reiff, Inorg. Chem., 1972, 11, 2291 CrossRef CAS.
  17. R. L. Carlin, Magnetochemistry, Springer, Berlin, 1986 Search PubMed.
  18. S. Nakatsuka, K. Osaki and N. Uryu, Inorg. Chem., 1982, 21, 4332 CrossRef CAS.
  19. Magnetostructural Correlations in Exchange Coupled Systems, eds. D. Gatteschi, O. Kahn and R. D. Willett, Reidel, Dordrecht, 1984 Search PubMed; O. Kahn, Molecular Magnetism, VCH, Weinheim, 1995 Search PubMed.
  20. V. H. Crawford, H. W. Richardson, J. R. Wasson, D. J. Hodgson and W. E. Hatfield, Inorg. Chem., 1976, 15, 2107 CrossRef.
  21. L. K. Thompson, S. K. Mandal, S. S. Tandon, J. N. Bridson and M. K. Park, Inorg. Chem., 1996, 35, 3117 CrossRef CAS.
  22. K. K. Nanda, L. K. Thompson, J. N. Bridson and K. Nag, J. Chem. Soc., Chem. Commun., 1994, 1337 RSC.
  23. A. J. Blake, J. P. Danks, A. Harrison, S. Parsons, P. Schooler, G. Whittaker and M. Schröder, J. Chem. Soc., Dalton Trans., 1998, 2335 RSC; A. J. Blake, J. P. Danks, I. A. Fallis, A. Harrison, W.-S. Li, S. Parsons, S. A. Ross, G. Whittaker and M. Schröder, J. Chem. Soc., Dalton Trans., 1998, 3969 RSC.
  24. S. L. Lambert and D. N. Hendrickson, Inorg. Chem., 1979, 18, 2683 CrossRef CAS.
  25. R. K. Nesbet, Ann. Phys., 1958, 4, 87 CrossRef CAS.
  26. C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203 CAS.
  27. F. Ullman and K. Brittner, Berichte, 1909, 42, 2539 Search PubMed.
  28. S. K. Mandal and K. Nag, J. Chem. Soc., Dalton Trans., 1983, 2429 RSC.
  29. G. M. Sheldrick, SHELXS 86, program for crystal structure solution, Acta Crystallogr., Sect. A, 1990, 46, 467 Search PubMed.
  30. G. M. Sheldrick, SHELXL 93, program for crystal structure refinement, University of Göttingen, 1993.
  31. J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105 CrossRef CAS.
  32. G. M. Sheldrick, SHELX 76, program for crystal structure refinement, University of Cambridge, 1976.
Click here to see how this site uses Cookies. View our privacy policy here.