Manganese(I) selenoether chemistry: synthesis, multinuclear NMR studies and the structures of [MnCl(CO)3(MeSeCH2CH2SeMe)], [MnCl(CO)3(MeSeCH2CH2CH2SeMe)] and [MnBr(CO)3{C6H4(SeMe)2-o}]

(Note: The full text of this document is currently only available in the PDF Version )

Julie Connolly, Maxwell K. Davies and Gillian Reid


Abstract

Reaction of [Mn(CO)5X] (X = Cl, Br or I) with RSe(CH2)nSeR (R = Me or Ph, n = 2; R = Me, n = 3) or C6H4(SeMe)2-o in refluxing CHCl3 yielded the neutral manganese(II) complexes [MnX(CO)3{RSe(CH2)nSeR}] or [MnX(CO)3{C6H4(SeMe)2-o}] as yellow or orange solids. Infrared spectroscopic studies confirmed the fac-tricarbonyl arrangement. Proton, 13C-{1H}, 77Se-{1H} and 55Mn NMR spectroscopy has been used to probe the solution behaviour, and show that only those compounds involving PhSeCH2CH2SePh are undergoing rapid pyramidal inversion on the NMR timescale, with the individual NMR distinguishable invertomers observed for the other complexes (meso-1, meso-2 and DL) in varying ratios. X-Ray crystallographic analyses on three examples confirmed a fac-tricarbonyl arrangement, with the diselenoether ligand chelating: [MnCl(CO)3(MeSeCH2CH2SeMe)] and [MnCl(CO)3(MeSeCH2CH2CH2SeMe)] adopt the DL arrangement, while [MnBr(CO)3{C6H4(SeMe)2-o}] is in the meso-2 form in the solid state. These are the first structure determinations on selenoether complexes of manganese(I) carbonyl halides. Most importantly, 55Mn NMR spectroscopic studies show that δ(55Mn) is to low frequency of those of the corresponding thioether compounds, lying in the range δ –175 to –702, the lowest frequencies occurring for the iodo derivatives. The CO stretching frequencies and 55Mn NMR shifts show that, for a given X, the manganese(I) centre in [MnX(CO)3(diselenoether)] is more shielded than in [MnX(CO)3(dithioether)], possibly indicating increased σ donation in the former.


References

  1. N. R. Champness, S. R. Jacob, G. Reid and C. S. Frampton, Inorg. Chem., 1995, 34, 396 CrossRef CAS; N. R. Champness, S. J. A. Pope and G. Reid, J. Chem. Soc., Dalton Trans., 1997, 1639 RSC; W. Levason, G. Reid and S. M. Smith, Polyhedron, 1997, 16, 5253 CrossRef CAS.
  2. M. C. Durrant, S. Davies, D. L. Hughes, C. Le Floc'h, R. L. Richards, J. R. Sanders, N. R. Champness, S. J. A. Pope and G. Reid, Inorg. Chim. Acta, 1996, 251, 13 CrossRef CAS.
  3. S. Davies, M. C. Durrant, D. L. Hughes, C. LeFloc'h, S. J. A. Pope, G. Reid, R. L. Richards and J. R. Sanders, J. Chem. Soc., Dalton Trans., 1998, 2191 RSC.
  4. D. Rehder, Multinuclear NMR, ed. J. Mason, Plenum, New York, 1987, ch. 19 Search PubMed.
  5. A. Kekeci and D. Rehder, Z. Naturforsch., Teil B, 1981, 36, 20 Search PubMed.
  6. F. Calderazzo, E. A. C. Lucken and D. F. Williams, J. Chem. Soc. A, 1967, 154 RSC.
  7. D. Rehder, H.-C. Bechtold, A. Kekeci, H. Schmidt and M. Z. Siewing, Z. Naturforsch., Teil B, 1982, 37, 631 Search PubMed.
  8. N. J. Holmes, W. Levason and M. Webster, J. Organomet. Chem., 1998, 568, 213 CrossRef CAS.
  9. A. M. Hill, W. Levason, M. Webster and I. Albers, Organometallics, 1997, 16, 5641 CrossRef CAS.
  10. J. Connolly, G. W. Goodban, G. Reid and A. M. Z. Slawin, J. Chem. Soc., Dalton Trans., 1998, 2125 Search PubMed.
  11. S. J. A. Pope and G. Reid, unpublished work.
  12. E. W. Abel and G. V. Hutson, J. Inorg. Nucl. Chem., 1969, 31, 3333 CrossRef CAS.
  13. D. Rehder, K. Ihmels, D. Wenke and P. Oltmanns, Inorg. Chim. Acta, 1985, 100, L13 CrossRef CAS.
  14. A. Belforte, F. Calderazzo, D. Vitali and P. F. Zanazzi, Gazz. Chim. Ital., 1985, 115, 125 CAS.
  15. E. W. Abel, S. K. Bhargava and K. G. Orrell, Prog. Inorg. Chem., 1984, 33, 1.
  16. E. G. Hope and W. Levason, Coord. Chem. Rev., 1993, 122, 109 CrossRef CAS.
  17. H. Schumann, A. M. Arif, A. L. Rheingold, C. Janiak, R. Hoffmann and N. Kuhn, Inorg. Chem., 1991, 30, 1618 CrossRef CAS.
  18. E. W. Abel, S. K. Bhargava, M. M. Bhatti, K. Kite, M. A. Mazid, K. G. Orrell, V. Sik, B. L. Williams, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1982, 2065 RSC.
  19. E. W. Abel, M. M. Bhatti, K. G. Orrell and V. Sik, J. Organomet. Chem., 1981, 208, 195 CrossRef.
  20. E. W. Abel, S. K. Bhargava, M. M. Bhatti, M. A. Mazid, K. G. Orrell, V. Sik, M. B. Hursthouse and K. M. A. Malik, J. Organomet. Chem., 1983, 250, 373 CrossRef CAS.
  21. SHELXS 86, Program for crystal structure solution, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 Search PubMed.
  22. TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1995.
  23. K. J. Reimer and A. Shaver, Inorg. Synth., 1979, 19, 159.
  24. D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter and G. L. Marshall, J. Chem. Soc., Perkin Trans. 2, 1984, 429 RSC.
  25. PATTY, The DIRDIF Program System, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
Click here to see how this site uses Cookies. View our privacy policy here.