Oxo–tungsten bis-dithiolene complexes relevant to tungsten centres in enzymes

(Note: The full text of this document is currently only available in the PDF Version )

E. Stephen Davies, Georgina M. Aston, Roy L. Beddoes, David Collison, Andrew Dinsmore, Arefa Docrat, John A. Joule, Clare R. Wilson and C. David Garner


Abstract

The reaction of [WO2(CN)4]4– with a series of dimethylamino- or thione-protected asymmetric dithiolenes (ene-1,2-dithiolates) has been used to synthesise [WO(dithiolene)2]2– complexes (dithiolene = SC(H)C(R)S, R = phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl or quinoxalin-2-yl), which have been characterised by elemental analysis, spectroscopy and electrochemistry. The prototypical compound [PPh4]2[WO(sdt)2]·EtOH [sdt = styrenedithiolate, SC(H)C(Ph)S], crystallises in space group P[hair space]21/c with a = 13.242(4), b = 31.894(8), c = 14.589(5) Å, β = 113.80(2)°, and Z = 4. The WOS4 moiety is square-based pyramidal with the O atom at the apex [W[double bond, length half m-dash]O 1.724(7) Å, W–Sav 2.37 Å, O–W–Sav 108.7°] and contains a cis geometry of the phenyl groups, although 1H NMR studies indicate that both cis and trans isomers are present in the isolated solid. The physical properties of all of the [WO(dithiolene)2]2– complexes are consistent with a retention of the WIVOS4 centre and each system undergoes a reversible electrochemical one-electron oxidation to the corresponding WV system. The variation in the dithiolene 1H NMR resonances, ν(W[double bond, length half m-dash]O) and ν(C[double bond, length half m-dash]C) (dithiolene) IR stretching frequencies, and the E½ values for the WV–WIV couple can be rationalised by a consideration of the nature of the aryl substituent. These data are compared to those of the analogous MoIV complexes and to those of the catalytic centres of the tungstoenzymes and their oxomolybdoenzyme counterparts.


References

  1. L. G. Ljungdahl, Trends Biochem. Sci., 1976, 1, 63 CAS.
  2. I. Yamamoto, T. Saiki, S.-M. Liu and L. G. Ljungdahl, J. Biol. Chem., 1983, 258, 1826 CAS.
  3. F. O. Bryant and M. W. W. Adams, J. Biol. Chem., 1989, 264, 5070 CAS.
  4. M. K. Johnson, D. C. Rees and M. W. W. Adams, Chem. Rev., 1996, 96, 2817 CrossRef CAS and references therein.
  5. M. K. Chan, S. Mukund, A. Kletzin, M. W. W. Adams and D. C. Rees, Science, 1995, 267, 1463 CAS.
  6. K. V. Rajagopalan, ACS Symp. Ser., 1993, 535, 38 CAS.
  7. M. J. Romão, M. Archer, I. Moura, J. J. G. Moura, J. LeGall, R. Engh, M. Schneider, P. Hof and R. Huber, Science, 1995, 167, 1170; R. Huber, R. Duarte, I. Moura, J. J. G. Moura, J. LeGall, M. Liu, R. Hille and M. J. Romão, Proc. Natl. Acad. Sci. USA, 1996, 93, 8846 CrossRef CAS.
  8. H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan and D. C. Rees, Science, 1996, 272, 1615 CrossRef CAS; F. Schneider, J. Löwe, R. Huber, H. Schindelin, C. Kisker and J. Knäblein, J. Mol. Biol., 1996, 263, 53 CrossRef CAS; A. S. McAlpine, A. G. McEwan, A. L. Shaw and S. Bailey, J. Biol. Inorg. Chem., 1997, 2, 690 CrossRef CAS.
  9. A. S. McAlpine, A. G. McEwan and S. Bailey, J. Mol. Biol., 1998, 275, 613 CrossRef CAS.
  10. J. C. Boyington, V. Gladyshev, S. V. Khangulov, T. C. Stadtman and P. D. Sun, Science, 1997, 275, 1305 CrossRef CAS.
  11. C. Kisker, H. Schindelin, A. Pacheco, W. Wehbi, J. H. Enemark, K. V. Rajagopalan and D. C. Rees, Cell, 1997, 91, 973 CrossRef CAS.
  12. D. C. Rees, Y. Hu, C. Kisker and H. Schindelin, J. Chem. Soc., Dalton Trans., 1997, 3909 RSC; H. Schindelin, C. Kisker and D. C. Rees, J. Biol. Inorg. Chem., 1997, 2, 773 CrossRef CAS.
  13. G. N. George, R. C. Prince, S. Mukund and M. W. W. Adams, results quoted in ref. 4.
  14. G. N. George, R. C. Prince, S. Mukund and M. W. W. Adams, J. Am. Chem. Soc., 1992, 114, 3521 CrossRef CAS.
  15. D. J. Rowe, C. D. Garner and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1985, 1907 RSC; A. Dinsmore, J. H. Birks, C. D. Garner and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1997, 801 RSC.
  16. E. S. Davies, R. L. Beddoes, D. Collison, A. Dinsmore, A. Docrat, J. A. Joule, C. R. Wilson and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 3985 RSC.
  17. J. Van de Poel and H. M. Neumann, Inorg. Chem., 1968, 7, 2086 CrossRef CAS.
  18. S. J. Lippard and B. J. Russ, Inorg. Chem., 1967, 6, 1943 CrossRef CAS.
  19. D. J. Rowe, C. D. Garner and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1985, 1907 RSC.
  20. A. K. Bhattacharya and A. G. Hortmann, J. Org. Chem., 1974, 39, 95 CrossRef CAS.
  21. C. J. Pickett, J. Chem. Soc., Chem. Commun., 1985, 323 RSC.
  22. R. R. Gagné, G. A. Konal and G. C. Lisensky, Inorg. Chem., 1980, 19, 2854 CrossRef CAS.
  23. R. M. Murray, W. R. Heinemann and G. W. O'Dom, Anal. Chem., 1967, 39, 1666 CrossRef CAS.
  24. Y. S. Sohn, D. N. Hendrickson and H. B. Gray, J. Am. Chem. Soc., 1971, 93, 3603 CrossRef.
  25. N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
  26. G. M. Sheldrick, C. Krueger and R. Goddard, Crystallographic Computing 3, Oxford University Press, 1985, p. 175.
  27. D. T. Cromer and J. T. Waber, International Tables for X-ray Crystallography, The Kynoch Press, 1974, vol. IV, Table 2.2A Search PubMed.
  28. D. T. Cromer and J. T. Waber, International Tables for X-ray Crystallography, The Kynoch Press, 1974, vol. IV, Table 2.3.1 Search PubMed.
  29. Texan-Texray Structure Analysis Package, Molecular Structure Corporation, 1985.
  30. A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C34.
  31. S. Boyde, C. D. Garner, J. A. Joule and D. J. Rowe, J. Chem. Soc., Chem. Commun., 1987, 800 RSC.
  32. S. Motherwell and W. Clegg, PLUTO Program for Plotting Molecular and Crystal Structures, Univ. of Cambridge, 1978.
  33. N. Ueyama, H. Oku and A. Nakamura, J. Am. Chem. Soc., 1992, 114, 7310 CrossRef CAS.
  34. S. K. Das, D. Biswas, R. Maiti and S. Sarkar, J. Am. Chem. Soc., 1996, 118, 1387 CrossRef CAS.
  35. D. Argyropoulos, C.-A. Mitsopoulou and D. Katakis, Inorg. Chem., 1996, 35, 5549 CrossRef CAS.
  36. S. Boyde, S. R. Ellis, C. D. Garner and W. Clegg, J. Chem. Soc., Chem. Commun., 1986, 1541 RSC.
  37. H. Oku, N. Ueyama and A. Nakamura, Chem. Lett., 1995, 621 CAS.
  38. A. Docrat and G. M. Aston, unpublished work.
  39. C. D. Garner and S. Bristow, in Molybdenum Enzymes, ed. T. G. Spiro, John Wiley & Sons, New York, 1985, pp. 372–373 Search PubMed.
  40. B. N. Figgis, Introduction to Ligand Fields, Interscience–John Wiley & Sons, New York, 1966 Search PubMed.
  41. P. E. Baugh, C. D. Garner, J. M. Charnock, D. Collison, E. S. Davies, A. S. McAlpine, S. Bailey, I. Lane, G. R. Hanson and A. G. McEwan, J. Biol. Inorg. Chem., 1997, 2, 634 CrossRef CAS.
  42. Values calculated from the coordinates of the structure reported in ref. 5.
  43. Values provided by S. Bailey and L. J. Stewart, personal communication.
  44. R. Hille, Chem. Rev., 1996, 96, 2757 CrossRef CAS.
  45. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  46. G. C. Tucci, J. P. Donahue and R. H. Holm, Inorg. Chem., 1998, 37, 1602 CrossRef CAS.
  47. S.-L. Soong, V. Chebolm, S. A. Koch, T. O'Sullivan and M. Millar, Inorg. Chem., 1986, 25, 4068 CrossRef.
  48. D. M. Lawson, C. E. Williams, D. J. White, A. P. Choay, L. A. Michenall and R. N. Pan, J. Chem. Soc., Dalton Trans., 1997, 3981 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.