Effect of fumarate on the kinetics and reaction mechanism of Cu+aq with dioxygen

(Note: The full text of this document is currently only available in the PDF Version )

Nadav Navon, Haim Cohen, Rudi van Eldik and Dan Meyerstein


Abstract

The kinetics of the reactions: Cu+aq + O2 ⇄ (CuO2)+aq and (CuO2)+ + Cu+aq →H+ 2Cu2+aq + H2O2 were studied

applying the pulse radiolysis technique, Kk = (2.3 ± 0.4) × 108 dm6 s–1 mol–2, in good agreement with the value calculated from literature data. The complex CuI(fum) (fum = fumarate) reacts considerably slower than Cu+aq with dioxygen so that the rate law reflects only the reaction of Cu+aq. A comparison of the results with those reported for the ligands L (water, CH3CN, phenanthroline, bipyridine or fumarate) indicates that the ligand affects the stability constant of the CuIL·O2 complex, and for fumarate also the subsequent reaction.


References

  1. R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1982 Search PubMed.
  2. J. O. Edwards and R. Curci, Catalytic Oxidations with Hydrogen Peroxide as Oxidant, ed. G. Strukul, Kluwer Academic Publishers, Dordrecht, 1992 Search PubMed.
  3. M. Regitz and B. Giese, Houben-Weyl, Thieme, Stuttgart, vol. E 19a, 1989 Search PubMed.
  4. H. Sigel(Editor), Metal ions in biological systems, Marcel Dekker, New York, 1981, vol. 13 Search PubMed; K. D. Karlin, S. Kaderli and A. D. Zuberbuhler, Acc. Chem. Res., 1997, 30, 139 Search PubMed; W. B. Tolman, Acc. Chem. Res., 1997, 30, 227 CrossRef CAS.
  5. A. Bakac, Prog. Inorg. Chem., 1995, 43, 268.
  6. (a) A. D. Zuberbuhler, Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, ed. K. D. Karlin and J. Zubieta, Adenine Press, New York, 1983, p. 237 Search PubMed; (b) A. D. Zuberbuhler, Helv. Chim. Acta, 1970, 53, 278; (c) L. Mi and A. D. Zuberbuhler, Helv. Chim. Acta, 1989, 74, 1679 CrossRef.
  7. S. Goldstein and G. Czapski, J. Am. Chem. Soc., 1983, 105, 7276 CrossRef CAS.
  8. G. V. Buxton, J. C. Green and R. M. Sellers, J. Chem. Soc., Dalton Trans., 1976, 2160 RSC.
  9. R. Marcus, Annu. Rev. Phys. Chem., 1966, 15, 155 CrossRef.
  10. M. J. Sisley and R. B. Jordan, Inorg. Chem., 1992, 31, 2880 CrossRef CAS.
  11. L. Lind, X. Shen, G. Merenyi and B. O. Jonsson, J. Am. Chem. Soc., 1989, 111, 7654 CrossRef.
  12. M. S. Matheson and L. M. Dorfman, Pulse Radiolysis, MIT Press, Cambridge, MA, 1969 Search PubMed.
  13. M. Freiberg and D. Meyerstein, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1825 RSC.
  14. S. Goldstein, G. Czapski, R. van Eldik, H. Cohen and D. Meyerstein, J. Phys. Chem., 1991, 95, 1282 CrossRef CAS.
  15. D. Meyerstein, Inorg. Chem., 1975, 14, 1716 CrossRef CAS.
  16. N. Navon, A. Masarwa, H. Cohen and D. Meyerstein, Inorg. Chim. Acta, 1997, 261, 29 CrossRef CAS.
  17. M. Masarwa, H. Cohen, D. Meyerstein, A. Bakac, D. L. Hickman and J. H. Espenson, J. Am. Chem. Soc., 1988, 110, 4293 CrossRef CAS.
  18. N. V. Orbunova, A. P. Purnal, Yu. I. Skurlator and S. O. Travin, Int. J. Chem. Kinet., 1977, 9, 983 CrossRef.
  19. B. James and R. Williams, J. Chem. Soc., 1961, 2007 RSC.
  20. M. Quental, M. L'her and J. Courtot-Coupez, Anal. Chim. Acta, 1978, 97, 373 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.