Synthesis and dynamic NMR studies of fluxionality in rhenium(I), platinum(II) and platinum(IV) complexes of ‘back-to-back’ 2,2′∶6′,2″-terpyridine ligands

(Note: The full text of this document is currently only available in the PDF Version )

Andrew Gelling, Matthew D. Olsen, Keith G. Orrell, Anthony G. Osborne and Vladimir Šik


Abstract

Syntheses are given for the following transition metal complexes, [{ReBr(CO)3}2L] (L = L1, L2 or L3), [(PtClMe3)2L1], [(PtIMe3)2L] (L = L2 or L3), [ReBr(CO)3L1], [Pt(C6F5)2L3], [Pt(C6F4CF3)2L] (L = L1 or L2), [{Pt(C6F4CF3)2}2L] (L = L1 or L2) and [ReBr(CO)3PtIMe3L1] where the ligands, L, are the ‘back-to-back’ terpyridine ligands, 6′,6″-bis(2-pyridyl)-2,2′∶4′,4″∶2″,2‴-quaterpyridine (L1), 1,4-bis(2,2′∶6′,2″-terpyridin-4′-yl)benzene (L2) and 6′,6″-bis{2-(4-methylpyridyl)}-2,2′∶4′,4″∶2″,2‴-quaterpyridine (L3). All the complexes undergo 1,4-metallotropic shifts in solution at above-ambient temperatures and restricted rotations of the pendant pyridyl rings at below-ambient temperatures. Activation energies for these processes have been computed from variable temperature one-dimensional bandshape analysis and 2D-exchange spectroscopy (2D-EXSY) NMR experiments. The metallotropic shift energies are very metal-dependent being in the order PtIV < ReI < PtII, with ΔG[hair space] (298.15 K) values ranging from 62 to 101 kJ mol–1. The fluxions are sensitive only to the local metal-coordination environment, there being negligible electronic interaction between the metal centres in the dinuclear complexes. In the mixed-metal dinuclear complex [ReBr(CO)3PtIMe3L1] it proved possible to measure the different rates of fluxion of the ReI and PtIV moieties.


References

  1. E. C. Constable, Adv. Inorg. Chem. Radiochem., 1986, 30, 69 Search PubMed.
  2. A. Gelling, K. G. Orrell, A. G. Osborne and V. Šik, J. Chem. Soc., Dalton Trans., 1998, 937 RSC and refs. therein.
  3. A. Gelling, M. D. Olsen, K. G. Orrell, A. G. Osborne and V. Šik, Inorg. Chim. Acta, 1997, 264, 257 CrossRef CAS.
  4. H. D. Kaesz, R. Bau, D. Hendrickson and J. M. Smith, J. Am. Chem. Soc., 1967, 89, 2844 CrossRef CAS.
  5. D. H. Goldsworthy, Ph.D. Thesis, University of Exeter, 1980.
  6. G. Lopez, G. Garcia, N. Cutillas and J. Ruiz, J. Organomet. Chem., 1983, 241, 269 CrossRef CAS.
  7. F. A. Cotton, J. Am. Chem. Soc., 1961, 83, 344 CrossRef CAS.
  8. B. R. Steele and K. Vrieze, Transition Met. Chem., 1977, 2, 140 CAS.
  9. K. T. Potts, D. A. Usifer, A. Guadalupe and H. D. Abruna, J. Am. Chem. Soc., 1987, 109, 3961 CrossRef CAS; K. T. Potts, P. Ralli, G. Theodoridis and P. Winslow, Org. Synth., 1986, 64, 189 CAS.
  10. E. C. Constable and A. M. W. Cargill-Thompson, J. Chem. Soc., Dalton Trans., 1992, 3467 RSC.
  11. D. F. Shriver, Manipulation of Air-Sensitive Compounds, McGraw Hill, New York, 1969 Search PubMed.
  12. D. A. Kleier and G. Binsch, DNMR3 Program 165, Quantum Chemistry Program Exchange, Indiana University, IN, 1970.
  13. E. W. Abel, T. P. J. Coston, K. G. Orrell, V. Šik and D. Stephenson, J. Magn. Reson., 1986, 70, 34 CAS.
  14. V. Šik, Ph.D. Thesis, University of Exeter, 1979.
  15. E. W. Abel, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Šik, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1994, 3441 RSC.
  16. E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Šik, M. B. Hursthouse and M. A. Mazid, J. Chem. Soc., Dalton Trans., 1993, 597 RSC.
  17. E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, V. Šik, M. B. Hursthouse and M. A. Mazid, J. Chem. Soc., Dalton Trans., 1993, 291 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.