Co-ordinating properties of cyclopeptides. Thermodynamic and spectroscopic study on the formation of copper(II) complexes with cyclo(Gly-His)4 and cyclo(Gly-His-Gly)2 and their superoxide dismutase-like activity

(Note: The full text of this document is currently only available in the PDF Version )

Raffaele P. Bonomo, Giuseppe Impellizzeri, Giuseppe Pappalardo, Roberto Purrello, Enrico Rizzarelli and Giovanni Tabbì


Abstract

Two cyclopeptides, cyclo(Gly-His)4 and cyclo(Gly-His-Gly)2 were synthesized with the specific aim to form copper(II) complexes which are able to mimic the active site of superoxide dismutase. Proton and copper(II) complexes were thermodynamically characterized. The copper(II) complexes were also studied by means of optical and ESR spectroscopy to gain information on their structural features and by voltammetry to know about their redox ability. Moreover, the antioxidant activity of these complex species was tested against enzymatically generated superoxide radical. Depending on the pH value of the solution, definite complexes could be characterized, in particular [Cu{cyclo(Gly-His)4}]2+ and [Cu{cyclo(Gly-His)4}H–2] and [Cu{cyclo(Gly-His-Gly)2}H–2] are the main species, which were taken into consideration to assay their antioxidant catalytic activity. The ESR studies suggested that a four-nitrogen co-ordination by means of imidazole nitrogen atoms or deprotonated peptide nitrogen atoms forms the environment around copper. At the same co-ordination level, the redox properties of these compounds parallel their scavenging abilities against O2 which are lower than those of other copper(II) complexes previously tested. The [Cu{cyclo(Gly-His)4}]2+ complex showed higher redox potential and better catalytic ability than [Cu{cyclo(Gly-His)4}H–2] and [Cu{cyclo(Gly-His-Gly)2}H–2], which have roughly similar redox potentials and scavenging abilities.


References

  1. W. F. Beyer, I. Fridovich, G. T. Mullenbach and R. Hallewell, in Oxy-Radicals in Molecular Biology and Pathology, eds. P. A. Cerutti, I. Fridovich and J. M. McCord, Alan R. Liss Inc., New York, 1988, pp. 145–162 Search PubMed.
  2. L. A. Hernandez, M. B. Crisham and D. N. Granger, in Biology of Copper Complexes, ed. J. R. J. Sorenson, Humana Press, Clifton, NJ, 1987, pp. 201–214 Search PubMed; G. A. Reed and C. Madhu, ibid., pp. 287– 298 Search PubMed; S. Okuyama, S. Hashimoto, H. Aihara, W. Willingham and J. R. J. Sorenson, ibid., pp. 301–313 Search PubMed.
  3. J. R. J. Sorenson, in Biology of Copper Complexes, ed. J. R. J. Sorenson, Humana Press, Clifton, NJ, 1987, pp. 243–257 Search PubMed.
  4. M. C. Linder, in Biochemistry of Copper, ed. E. Frieden, Plenum, New York and London, 1991, ch. 9 Search PubMed.
  5. A. E. G. Cass, in Metalloproteins. Part 1: Metalloproteins with Redox Roles, ed. P. Harrison, MacMillan, London, 1985, pp. 121–156 Search PubMed.
  6. M. J. Kendrick, M. T. May, M. J. Plishka and K. D. Robinson, in Metals in Biological Systems, Ellis Horwood, New York, 1992, p. 162 Search PubMed.
  7. L. L. Costanzo, G. De Guidi, S. Giuffrida, E. Rizzarelli and G. Vecchio, J. Inorg. Biochem., 1993, 50, 273 CrossRef CAS.
  8. G. Condorelli, L. L. Costanzo, G. De Guidi, S. Giuffrida, E. Rizzarelli and G. Vecchio, J. Inorg. Biochem., 1994, 54, 257 CrossRef CAS.
  9. R. P. Bonomo, E. Conte, G. Impellizzeri, G. Pappalardo, R. Purrello and E. Rizzarelli, J. Chem. Soc., Dalton Trans., 1996, 3093 RSC.
  10. R. P. Bonomo, G. Impellizzeri, G. Pappalardo and E. Rizzarelli, in Magnetic Resonance in Medicine and Biology, eds. A. Agnoli and F. Conti, Centro Tecnochimico, Padova, 1990, vol. 4, pp. 239–244 Search PubMed.
  11. M. Chelli, M. Ginanneschi, A. M. Papini, D. Pinzani, G. Rapi, E. Borghi, F. Laschi and M. Occhiuzzi, J. Chem Res., 1993, 437, (S) 437; (M) 2929 Search PubMed.
  12. E. Borghi, F. Laschi, M. Occhiuzzi, M. Chelli, M. Ginanneschi, A. M. Papini and G. Rapi, J. Chem. Res., 1994, (S) 48 Search PubMed.
  13. S. Kubota and J. Tsi Yang, Proc. Natl. Acad. Sci. USA, 1994, 81, 3283.
  14. R. G. Bhirud and T. S. Srivastava, Inorg. Chim. Acta, 1991, 179, 125 CrossRef CAS.
  15. R. P. Bonomo, F. Bonsignore, E. Conte, G. Impellizzeri, G. Pappalardo, R. Purrello and E. Rizzarelli, J. Chem. Soc., Dalton Trans., 1993, 1295 RSC.
  16. Z. Liao, W. Liu, J. Liu, Y. Jiang, J. Shi and C. Liu, J. Inorg. Biochem., 1994, 55, 165 CrossRef CAS.
  17. R. P. Bonomo, E. Conte, R. Marchelli, A. M. Santoro and G. Tabbì, J. Inorg. Biochem., 1994, 53, 127 CrossRef CAS.
  18. E. Bienvenue, S. Choua, M. A. Lobo-Recio, C. Marzin, P. Pacheco, P. Seta and G. Tarrago, J. Inorg. Biochem., 1995, 57, 157 CrossRef CAS.
  19. J. L. Pierre, P. Chautemps, S. Refaif, C. Beguin, A. El Marzouki, G. Serratrice, E. Saint-Aman and P. Rey, J. Am. Chem. Soc., 1995, 117, 1965 CrossRef CAS.
  20. R. P. Bonomo, E. Conte, G. De Guidi, G. Maccarrone, E. Rizzarelli and G. Vecchio, J. Chem. Soc., Dalton Trans., 1996, 4351 RSC.
  21. G. Tabbi, W. L. Driessen, J. Reedijk, R. P. Bonomo, N. Veldman and A. L. Spek, Inorg. Chem., 1997, 36, 1168 CrossRef CAS.
  22. F. Scheneider, Hoppe Seyler's Z. Physiol. Chem., 1964, 338, 131 Search PubMed.
  23. M. Ptak, A. Heitz and M. Dreux, Biopolymers, 1978, 17, 1129 CrossRef CAS.
  24. B. R. James and R. J. P. Williams, J. Chem. Soc., 1961, 2007 RSC.
  25. G. Arena, R. P. Bonomo, G. Impellizzeri, R. M. Izatt, J. D. Lamb and E. Rizzarelli, Inorg. Chem., 1987, 26, 795 CrossRef CAS.
  26. R. P. Bonomo, F. Riggi and A. J. Di Bilio, Inorg. Chem., 1988, 27, 2510 CrossRef CAS.
  27. R. P. Bonomo, L. Casella, L. Di Gioia, H. Molinari, G. Impellizzeri, T. Jordan, G. Pappalardo, R. Purrello and E. Rizzarelli, J. Chem. Soc., Dalton Trans., 1997, 2387 RSC.
  28. W. Bal, M. Jezowska-Bojczuk, H. Kozlowski, L. Cruscinski, G. Kupryszewski and B. Witczuk, J. Inorg. Biochem., 1995, 57, 235 CrossRef CAS.
  29. T. Kowalik-Jankowska, C. O. Onindo, H. Kozlowski, L. D. Pettit, L. Lankiewicz and M. Jasionowski, J. Inorg. Biochem., 1995, 60, 21 CrossRef CAS.
  30. Hyper Chem, Hypercube release 5.01 (license no. 500–10002406), Hypercube Inc., Waterloo, Ontario, 1996.
  31. H. A. Azab, L. Banci, M. Borsari, C. Luchinat, M. Sola and M. S. Viezzoli, Inorg. Chem., 1992, 31, 4649 CrossRef CAS.
  32. Z. Durackova and J. Labuda, J. Inorg. Biochem., 1995, 58, 297 CrossRef CAS.
  33. N. N. Greenwood and A. Earnshaw, in Chemistry of the Elements, Pergamon, Oxford, 1987, p. 1371 Search PubMed.
  34. R. P. Bonomo, R. Marchelli and G. Tabbì, J. Inorg. Biochem., 1995, 60, 205 CrossRef CAS.
  35. E. Ochiai, in Bioinorganic Chemistry, An Introduction, Allyn and Bacon Inc., Boston, 1977, p. 256 Search PubMed.
  36. B. Castro, J. R. Dormoy, G. Evin and C. Selve, Tetrahedron Lett., 1975, 1219 CrossRef CAS.
  37. D. Le Nguyen and B. Castro, Peptide Chem., 1987, 231 Search PubMed.
  38. J. C. Touchstone and M. F. Dobbins, in Practice of thin layer chromatography, Wiley-Interscience, New York, 1983, p. 180 Search PubMed.
  39. G. Arena, C. Rigano, E. Rizzarelli and S. Sammartano, Talanta, 1979, 26, 1 CrossRef CAS.
  40. P. Gans, A. Vacca and A. Sabatini, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  41. R. Maggiore, S. Musumeci and S. Sammartano, Talanta, 1976, 23, 43 CrossRef CAS.
  42. A. Lund and T. Vanngard, J. Chem. Phys., 1969, 50, 2979.
  43. A. M. Bond, in Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker, New York and Basel, 1980, pp. 182–190 Search PubMed.
  44. C. Nervi, personal communication.
  45. A. J. Bard, in Electrochemical methods: fundamentals and applications, Wiley, New York, 1980, p. 430 Search PubMed.
  46. D. T. Sawyer and J. L. Roberts, in Experimental Electrochemistry for Chemists, Wiley, New York, 1974, p. 42 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.