Bulk liquid membrane transport of ferrioxamine B by neutral and ionizable carriers

(Note: The full text of this document is currently only available in the PDF Version )

Ivan Spasojević and Alvin L. Crumbliss


Abstract

Bulk liquid membrane (BLM) transport of ferrioxamine B (FeHDFB+) across an artificial hydrophobic membrane facilitated by neutral and ionizable carriers was studied. Under controlled conditions, ferrioxamine B transport by neutral ionophores follows a simple theoretical model for a diffusion controlled process which predicts a linear dependence of flux upon aqueous-to-chloroform extraction constants. Unsubstituted 18C6 crown ether exhibits the best transport properties among the neutral carriers investigated with a flux of 1.4 × 10–10 mol s–1 cm–2. When transport of FeHDFB+, metal-free desferrioxamine B, H4DFB+, and AlHDFB+ mediated by DC18C6 crown ether was followed, a selectivity was observed with a ratio of measured relative fluxes of 5∶3∶1, respectively. An ionizable carrier lasalocid {6-[7-[5-ethyl-5-(5-ethyltetrahydro-5-hydroxy-6-methyl-2H-pyran-2-yl)tetrahydro-3-methyl-2-furanyl]-4-hydroxy-3,5-dimethyl-6-oxonoyl]-2-hydroxy-3-methylbenzoic acid}, negatively charged at neutral pH, outperformed the crown ethers as a ferrioxamine B transporting agent. However, transport by ionizable carriers follows a different mechanism and occurs only when an electrolyte is present in the receiving phase. This requirement was exploited by designing a BLM experiment in which H4DFB+ acts as a counter cation at the receiving interface, whereby FeHDFB+ and H4DFB+ were transported in opposite directions in a synergistic fashion. When the ionizable salicylic acid moiety of lasalocid is transformed into an ester, lasalocid almost entirely loses its transporting properties. This suggests a co-operative mode of binding in which electrostatic recognition of the FeHDFB+ cation by lasalocid anion is a prerequisite for a subsequent encapsulation of the amine site in a host–guest fashion.


References

  1. A. L. Crumbliss, in Handbook of Microbial Iron Chelates, ed. G. Winkelmann, CRC Press, Boca Raton, FL, 1991, p. 177 Search PubMed.
  2. K. N. Raymond and J. R. Telford, in Bioinorganic Chemistry: An Inorganic Perspective of Life, ed. D. P. Kessissoglou, NATO ASI Series C: Mathematical and Physical Sciences, Kluwer, Dordrecht, 1995, vol. 459, p. 25 Search PubMed.
  3. J. R. Telford and K. N. Raymond, in Comprehensive Supramolecular Chemistry, ed. G. W. Gokel, Pergamon, London, 1996, vol. 1, p. 245 Search PubMed.
  4. A.-M. Albrecht-Gary and A. L. Crumbliss, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, New York, 1998, vol. 35, p. 239 Search PubMed.
  5. L. Ettlinger, R. Corbaz and R. Hütter, Arch. Microbiol., 1958, 31, 326 CrossRef.
  6. M. J. Pippard, in The Development of Iron Chelators for Clinical Use, eds. R. J. Bergeron and G. M. Brittenham, CRC Press, Boca Raton, FL, 1994, p. 57 Search PubMed.
  7. B. Monzyk and A. L. Crumbliss, J. Am. Chem. Soc., 1982, 104, 4921 CrossRef CAS.
  8. A. Evers, R. D. Hancock, A. E. Martell and R. J. Motekaitis, Inorg. Chem., 1989, 28, 2189 CrossRef CAS.
  9. T. M. Fyles, Top. Inclusion Sci., 1991, 2, 59 Search PubMed.
  10. M. Hiraoka, (Editor), Crown Ethers and Analogous Compounds: Studies in Organic Chemistry, Elsevier, Amsterdam, 1992, vol. 45 Search PubMed.
  11. B. Cox and H. Schneider, Coordination and Transport Properties of Macrocyclic Compounds in Solution, Elsevier, Amsterdam, 1992 Search PubMed.
  12. Y. Inoue and G. W. Gokel, (Editor), Cation Binding by Macromolecules, Marcel Dekker, New York, 1990 Search PubMed.
  13. I. Spasojević, I. Batinić-Haberle, P. L. Choo and A. L. Crumbliss, J. Am. Chem. Soc., 1994, 116, 5714 CrossRef CAS.
  14. (a) I. Batinić-Haberle, I. Spasojević and A. L. Crumbliss, Inorg. Chem., 1996, 35, 2352 CrossRef CAS; (b) A. L. Crumbliss, I. Batinić-Haberle and I. Spasojević, Pure Appl. Chem., 1996, 68, 1225 CAS.
  15. I. Batinić-Haberle and A. L. Crumbliss, Inorg. Chem., 1995, 34, 928 CrossRef CAS.
  16. I. Batinić-Haberle, I. Spasojević and A. L. Crumbliss, Inorg. Chim. Acta, 1996, 260, 35 CrossRef.
  17. R. W. Hay, Bio-Inorganic Chemistry, Ellis Harwood, Chichester, 1984, p. 73 Search PubMed.
  18. N. N. Li, U.S. Pat., 3 410 794, 1968 Search PubMed.
  19. R. M. Izatt, R. L. Bruening, M. H. Cho, W. Geng, J. D. Lamb and J. J. Christensen, J. Membr. Sci., 1987, 33, 169 CrossRef CAS.
  20. H. C. Visser, F. de Jong and D. N. Reinhoudt, Chem. Soc. Rev., 1993, 112, 317 Search PubMed.
  21. C. F. Reusch and E. L. Cussler, AIChE J., 1973, 19, 736 CrossRef CAS.
  22. R. M. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 1991, 91, 1721 CrossRef CAS.
  23. J.-P. Behr, M. Kirch and J.-M. Lehn, J. Am. Chem. Soc., 1985, 107, 241 CrossRef CAS.
  24. R. M. Izatt, J. D. Lamb and R. L. Bruening, Sep. Sci. Technol., 1988, 23, 1645 CAS.
  25. M. Biruš, Z. Bradic, G. Krznaric, N. Kujundžić, M. Pribanić, P. C. Wilkins and R. G. Wilkins, Inorg. Chem., 1987, 26, 1000 CrossRef CAS.
  26. R. Bastian, R. Weberling and F. Palilla, Anal. Chem., 1956, 28, 459 CrossRef CAS.
  27. H. Tsukube, K. Takagi, T. Higashiyama, T. Iwashido and N. Hayama, Inorg. Chem., 1994, 33, 2984 CrossRef CAS.
  28. F. Arndt, Org. Synth., 1943, Coll. Vol. IV, 165.
  29. Aldrich Technical Information Bulletin, Number AL-180, Aldrich Chemical Company, Inc., PO Box 355, Milwaukee, WI 53201, 1990 Search PubMed.
  30. R. Lyazghi, A. Cuer, G. Dauphin and J. Juillard, J. Chem. Soc., Perkin. Trans. 2, 1992, 35 RSC.
  31. The Aldrich Library of 13C and 1H NMR Spectra, eds., C. J. Pouchert and J. Behuke, Aldrich Chemical Company, PO Box 355, Milwaukee, WI, 53201, 1993, vol. 2, p. 1255.
  32. J. D. Lamb, J. J. Christensen, J. L. Oscarson, B. L. Nielsen, B. W. Asay and R. M. Izatt, J. Am. Chem. Soc., 1980, 102, 6820 CrossRef CAS.
  33. K. H. Wong, K. Yagi and J. Smid, J. Membr. Biol., 1974, 18, 379 Search PubMed.
  34. S. M. Trzaska and A. L. Crumbliss, manuscript in preparation.
  35. I. Batinić-Haberle, I. Spasojević, Y. Jang, R. A. Bartsch and A. L. Crumbliss, Inorg. Chem., 1998, 37, 1438 CrossRef CAS.
  36. I. Batinić-Haberle, I. Spasojević, R. A. Bartsch and A. L. Crumbliss, J. Chem. Soc., Dalton Trans., 1995, 2503 RSC.
  37. H. K. Frensdorff, J. Am. Chem. Soc., 1971, 93, 600 CrossRef CAS.
  38. J. D. Godard, J. S. Shultz and R. J. Bassett, Chem. Eng. Sci., 1970, 25, 665 CrossRef.
  39. T. B. Stolwijk, E. J. R. Sudhölter and D. N. Reinhoudt, J. Am. Chem. Soc, 1989, 111, 6321 CrossRef CAS and refs. therein.
  40. Y. Li, G. Gokel, J. Hernández and L. Echegoyen, J. Am. Chem. Soc., 1994, 116, 3087 CrossRef CAS.
  41. P. B. Chock, Proc. Natl. Acad. Sci. USA, 1972, 69, 1939 CAS.
  42. J. Bolte, C. Demuynck, G. Jemminet, J. Juillard and C. Tisser, Can. J. Chem., 1982, 60, 981 CAS.
  43. H. Tsukube, H. Takeishi and Z. Yoshida, Inorg. Chim. Acta, 1996, 251, 1 CrossRef CAS.
  44. L. F. Lindoy, Coord. Chem. Rev., 1996, 148, 349 CrossRef CAS and refs. therein.
  45. C. D. Caldwell and A. L. Crumbliss, Inorg. Chem., 1998, 37, 1906 CrossRef CAS.
  46. H. Degani and H. L. Friedman, Biochemistry, 1974, 13, 5022 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.