Mimicking the binding of glutamate to zinc in thermolysin and carboxypeptidase: the synthesis of [η3-(HCO2)BpBut,Pri]ZnCl by insertion of CO2 into a B–H bond of the bis(pyrazolyl)hydroborato zinc complex [BpBut,Pri]ZnCl

(Note: The full text of this document is currently only available in the PDF Version )

Prasenjit Ghosh and Gerard Parkin


Abstract

Insertion of CO2 into one of the B–H bonds of the bis(pyrazolyl)hydroborato complex [BpBut,Pr[hair space]i[hair space]]ZnCl yields [η3-(HCO2)BpBut,Pr[hair space]i[hair space]]ZnCl; the carboxylate group of the generated [NNO] donor ligand mimics the glutamate residues at the active sites of thermolysin and carboxypeptidase.


References

  1. For reviews on zinc enzymes, see, B. L. Vallee and D. S. Auld, Biochemistry, 1990, 29, 5647 Search PubMed; B. L. Vallee and D. S. Auld, Acc. Chem. Res., 1993, 26, 543 CrossRef CAS; I. Bertini, C. Luchinat, W. Maret and M. Zeppezauer, (Editors), in Progress in Inorganic Biochemistry and Biophysics, Birkhauser, Boston, 1986, vol. 1 CrossRef CAS; B. L. Vallee and D. S. Auld, in Matrix Metalloprotinases and Inhibitors; eds. H. Birkedal-Hansen, Z. Werb, H. G. Welgus and H. E. van Wart, Gustav Fischer Verlag, New York, 1992, pp. 5–19 CrossRef CAS; B. L. Vallee and D. S. Auld, Biochemistry, 1993, 32, 6493 CrossRef CAS; J. E. Coleman, Annu. Rev. Biochem., 1992, 61, 897 Search PubMed; W. N. Lipscomb and N. Sträter, Chem. Rev., 1996, 96, 2375 Search PubMed; R. H. Holm, P. Kennepohl and E. I. Solomon, Chem. Rev., 1996, 96, 2239 CrossRef CAS.
  2. R. Alsfasser, S. Trofimenko, A. Looney, G. Parkin and H. Vahrenkamp, Inorg. Chem., 1991, 30, 4098 CrossRef CAS; A. Looney, R. Han, K. McNeill and G. Parkin, J. Am. Chem. Soc., 1993, 115, 4690 CrossRef CAS.
  3. Bis- and tris-(pyrazolyl)hydroborato ligands are represented by the abbreviations [BpR,R′] and [TpR,R′], with the 3- and 5-alkyl substitutents listed respectively as superscripts. See, S. Trofimenko, Chem. Rev., 1993, 93, 943 Search PubMed; G. Parkin, Adv. Inorg. Chem., 1995, 42, 291 CrossRef CAS.
  4. C. Kimblin, W. E. Allen and G. Parkin, J. Chem. Soc., Chem. Commun., 1995, 1813 RSC.
  5. C. Kimblin, T. Hascall and G. Parkin, Inorg. Chem., 1997, 36, 5680 CrossRef CAS.
  6. P. Ghosh and G. Parkin, Chem. Commun., 1998, 413 RSC.
  7. C. Dowling and G. Parkin, Polyhedron, 1996, 15, 2463 CrossRef CAS.
  8. Several studies concerned with modeling the function of these enzymes have been reported, although the zinc complexes used have not been structurally characterized as tetrahedral [NNO]ZnX derivatives. See, for example, (a) J. T. Groves and R. M. Dias, J. Am. Chem. Soc., 1979, 101, 1033 CrossRef CAS; (b) K. Ogino, K. Shindo, T. Minami, W. Tagaki and T. Eiki, Bull. Chem. Soc. Jpn., 1983, 56, 1101 CAS; (c) C. C. Tang, D. Davalian, P. Huang and R. Breslow, J. Am. Chem. Soc., 1978, 100, 3918 CrossRef CAS; (d) D. S. Sigman and C. T. Jorgenson, J. Am. Chem. Soc., 1972, 94, 1724 CrossRef CAS; (e) A. Schepartz and R. Breslow, J. Am. Chem. Soc., 1987, 109, 1814 CrossRef CAS.
  9. For structures of carboxypeptidase, see, (a) D. C. Rees, M. Lewis and W. N. Lipscomb, J. Mol. Biol., 1983, 168, 367 CAS; (b) M. F. Schmid and J. R. Herriott, J. Mol. Biol., 1976, 103, 175 CrossRef CAS; (c) D. W. Christianson and W. N. Lipscomb, Acc. Chem. Res., 1989, 22, 62 CrossRef CAS.
  10. For structures of thermolysin, see, (a) M. A. Holmes and B. W. Matthews, J. Mol. Biol., 1982, 160, 623 CrossRef CAS; (b) D. R. Holland, D. E. Tronrud, H. W. Pley, K. M. Flaherty, W. Stark, J. N. Jansonius, D. B. McKay and B. W. Matthews, Biochemistry, 1992, 31, 11 310 CrossRef CAS; (c) D. R. Holland, A. C. Hausrath, D. Juers and B. W. Matthews, Protein Science, 1995, 4, 1955 Search PubMed; (d) B. W. Matthews, Acc. Chem. Res., 1988, 21, 333 CrossRef CAS.
  11. W. R. Kester and B. W. Matthews, J. Biol. Chem., 1977, 252, 7704 CAS.
  12. Thus, carboxypeptidase A exhibits bidentate glutamate binding,9a whereas carboxypeptidase B exhibits unidentate co-ordination.9b Thermolysin has likewise been reported to crystallize with either uni- or bi-dentate co-ordination, depending upon pH.10c.
  13. C. Dowling, V. J. Murphy and G. Parkin, Inorg. Chem., 1996, 35, 2415 CrossRef CAS.
  14. [BpBut,Pri]ZnCl is synthesized by metathesis of ZnCl2 with Tl[BpBut,Pri], see, C. Dowling, P. Ghosh and G. Parkin, Polyhedron, 1997, 16, 3469 Search PubMed.
  15. A solution of [BpBut,Pri]ZnCl (0.25 g, 0.56 mmol) in C6H6(ca. 10 mL) in an ampoule was treated with CO2[ca. 2 atm (1 atm = 101 325 Pa)] and stirred overnight at 50 °C. The volatile components were removed in vacuo and the residue was washed with pentane (5 mL) to give [η3-(HCO2)BpBut,Pri]ZnCl as a white solid (0.16 g, 59%)(Found: C, 51.9; H, 7.5; N, 11.6. Calc. for C21H36BClN4O2Zn: C, 51.7; H, 7.4; N, 11.5%). IR data (cm–1, KBr pellet): 2586 [ν(B–H)], 1650 and 1336 [ν(C–O)]. 1H NMR, (C6D6): δ 1.07 [d, 3JH–H= 7, 6 H, CH(CH3)2], 1.19 [d, 3JH–H= 7, 6 H, CH(CH3)2], 3.33 [sept, 3JH–H= 7, 2 H, CH(CH3)2], 1.54 [s, 18 H, C(CH3)3], 5.98 [s, 2 H, C3N2H], 7.21 [s, 1 H, HCO2], BH not located. 13C NMR (C6D6): δ 22.4 [q, 1JC–H= 127, 2 C, CH(CH3)2], 23.4 [q, 1JC–H= 127, 2 C, CH(CH3)2], 26.9 [d, 1JC–H= 129, 2 C, CH(CH3)2], 30.8 [q, 1JC–H= 126, 6 C, C(CH3)3], 32.2 [s, 2 C, C(CH3)3], 100.5 [d, 1JC–H= 175, 2 C, C3N2H], 158.9 [s, 2 C, C3N2H], 165.0 [s, 2 C, C3N2H], 168.2 [d, 1JC–H= 224 Hz, 1 C, HCO2]..
  16. Coupling in the 1H NMR spectrum was observed using enriched 13CO2.
  17. G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227 CrossRef CAS.
  18. 3-(HCO2)BpBut,Pri]ZnCl: C21H36BClN4O2Zn, triclinic, P[1 with combining macron](no. 2), a= 9.800(3), b= 9.856(4), c= 13.742(3)Å, α= 74.87(3), β= 83.04(2), γ= 83.95(3)°, U= 1268.1(7)Å3, Z= 2, µ= 1.096 mm–1, T= 293(2) K, R1 = 0.0558 for 3224 reflections. CCDC reference number 186/1038.
  19. A. Abufarag and H. Vahrenkamp, Inorg. Chem., 1995, 34, 3279 CrossRef CAS; A. Abufarag and H. Vahrenkamp, Inorg. Chem., 1995, 34, 2207 CrossRef CAS.
  20. S. S. Tandon, S. Chander, L. K. Thompson, J. N. Bridson and V. McKee, Inorg. Chim. Acta, 1994, 219, 55 CrossRef CAS.
  21. T. C. Higgs and C. J. Carrano, Inorg. Chem., 1997, 36, 291 CrossRef CAS; T. C. Higgs and C. J. Carrano, Inorg. Chem., 1997, 36, 298 CrossRef.
  22. For example, only one mononuclear tetrahedral zinc complex of a tridentate [NNO] ligand is listed the Cambridge Structural Database (Version 5.14). See, E. J. Corey, P.-W. Yuen, F. J. Hannon and D. A. Wierda, J. Org. Chem., 1990, 55, 784 Search PubMed.
  23. W. Leitner, Coord. Chem. Rev., 1996, 153, 257 CrossRef CAS and refs. therein A. Behr, Carbon Dioxide Activation by Metal Complexes, VCH, Weinheim, 1988 Search PubMed.
  24. The first report of CO2 insertion into a B–H bond of which we are aware involves the reaction of NaBH4 with CO2 to give, depending upon conditions, Nax[BO(OCH3)(O2CH)]x and Na[HB(O2CH)3].24a However, these compounds were neither spectroscopically nor structurally authenticated. More recently, [(biL)(Ph3P)Cu][BH4] was reported to react with CO2 in the presence of PPh3 to give [(biL)(Ph3P)2Cu][HB(O2CH)3] and [(biL)(Ph3P)2Cu][H2B(O2CH)2](biL = 1,10-phenanthroline and 3,4,7,8-tetramethyl-1, 10-phenanthroline), which were spectroscopically characterized.24b (a) T. Wartik and R. K. Pearson, J. Inorg. Nucl. Chem., 1958, 7, 404 CrossRef CAS; (b) G. L. Monica, G. A. Ardizzoia, F. Cariati, S. Cenini and M. Pizzotti, Inorg. Chem., 1985, 24, 3920 CrossRef.
  25. For an example of CO2 insertion into a B–N bond, see, A. Meller and A. Ossko, Monatsh. Chem., 1972, 103, 577 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.