Thiocyanato complexes of the coinage metals: synthesis and crystal structures of the polymeric pyridine complexes [Ag[hair space]xCuy(SCN)x + y(py)z]

(Note: The full text of this document is currently only available in the PDF Version )

Harald Krautscheid, Norbert Emig, Nicole Klaassen and Petra Seringer


Abstract

From solutions of CuSCN or AgSCN in pyridine, several pyridine complexes of the thiocyanates with varying compositions and crystal structures were isolated depending on the reaction conditions. In CuSCN and in the orthorhombic modification of AgSCN the SCN anions co-ordinate to four metal atoms as 1,1,1,3-µ4 bridges, whereas the degree of bridging decreases with increasing amounts of pyridine in the polymeric complexes [Cu(SCN)(py)z] and [Ag(SCN)(py)z] (z = 1 or 2). The distorted tetrahedral co-ordination of the metal atoms is preserved by co-ordination of pyridine ligands. Especially in the heteronuclear complexes [AgCu(SCN)2(py)4], [AgCu(SCN)2(py)3] and [Ag2Cu(SCN)3(py)3], interesting variants of structures result from the different possible modes of co-ordination of the SCN ligand and from the preferred co-ordination of the “soft” S atoms to the “soft” Ag+ ions as defined by Pearson’s hard and soft acid and base principle.


References

  1. H. Krautscheid, Z. Anorg. Allg. Chem., 1995, 621, 2049 CrossRef CAS; H. Krautscheid and F. Vielsack, Angew. Chem., Int. Ed. Engl., 1995, 34, 2035 CrossRef CAS; Z. Anorg. Allg. Chem., 1997, 623, 259 Search PubMed.
  2. D. L. Smith and V. D. Saunders, Acta Crystallogr., Sect. B, 1981, 37, 1807 CrossRef; 1982, 38, 907.
  3. M. Kabesova, M. Dunaj-Jurco, M. Serator, J. Gazo and J. Garaj, Inorg. Chim. Acta, 1976, 17, 161 CrossRef CAS.
  4. J. L. Burmeister, Coord. Chem. Rev., 1966, 1, 205 CrossRef CAS; 1968, 3, 225; 1990, 105, 77.
  5. R. A. Bailey, S. L. Kozak, T. W. Michelsen and W. N. Mills, Coord. Chem. Rev., 1971, 6, 407 CrossRef CAS; A. H. Norbury, Adv. Inorg. Chem. Radiochem., 1975, 17, 231 Search PubMed.
  6. M. Kabesova, R. Boca, M. Melnik, D. Valigura and M. Dunaj-Jurco, Coord. Chem. Rev., 1995, 140, 115 CrossRef CAS.
  7. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533 CrossRef CAS; M. K. Kroeger and R. S. Drago, J. Am. Chem. Soc., 1981, 103, 3250 CrossRef CAS.
  8. K. Vrieze and G. van Koten, in Comprehensive Coordination Chemistry, Pergamon, Oxford, 1987, vol. 2, p. 225 Search PubMed.
  9. G. O. Morpurgo, G. Dessy and V. Fares, J. Chem. Soc., Dalton Trans., 1984, 785 RSC; P. C. Healy, B. W. Skelton, A. F. Waters and A. H. White, Aust. J. Chem., 1991, 44, 1049 CAS.
  10. N. K. Mills and A. H. White, J. Chem. Soc., Dalton Trans., 1984, 229 RSC.
  11. P. C. Healy, C. Pakawatchai, R. I. Papasergio, V. A. Patrick and A. H. White, Inorg. Chem., 1984, 23, 3769 CrossRef CAS.
  12. L.-N. Rudolph, Ph.D. Thesis, Freie Universität Berlin, 1996; C. L. Raston, B. Walter and A. H. White, Aust. J. Chem., 1979, 32, 2757 Search PubMed; G. J. Pyrka, Q. Fernando, M. B. Inoue and M. Inoue, Inorg. Chim. Acta, 1989, 156, 257 CAS.
  13. L.-N. Rudolph and H. Hartl, Z. Anorg. Allg. Chem., 1997, 623, 687 CrossRef CAS.
  14. C. Potvin, J.-M. Manoli, F. Sécheresse and S. Marzak, Inorg. Chem., 1987, 26, 4370 CrossRef CAS; J.-M. Manoli, C. Potvin, F. Sécheresse and S. Marzak, Inorg. Chim. Acta, 1988, 150, 257 CrossRef CAS.
  15. A. Tramer, J. Chim. Phys. Chim. Biol., 1962, 59, 232 Search PubMed; M. Kabesova, J. Kohout and J. Gazo, Inorg. Chim. Acta, 1978, 31, L435 CrossRef CAS.
  16. R. H. Toeniskoetter and S. Solomon, Inorg. Chem., 1968, 7, 617 CrossRef CAS; C. G. Macarovici and R. Micu-Semeniuc, Rev. Roum. Chim., 1969, 14, 357 Search PubMed; B. R. S. Sengar and G. Narain, Zh. Obshch. Khim., 1975, 45, 339 CAS; M. A. S. Goher, Collect. Czech. Chem. Commun., 1977, 42, 1478 CAS.
  17. I. Lindqvist, Acta Crystallogr., 1957, 10, 29 CrossRef CAS.
  18. A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, 5th edn., 1995, p. 936 Search PubMed.
  19. G. M. Sheldrick, SHELXS 86 and SHELXL 93, Programs for Crystal Structure Determinations, Göttingen, 1986 and 1993.
  20. E. Keller, SCHAKAL 92, A Fortran Program for Graphical Representation of Molecular and Crystallographic Models, Universität Freiburg, 1992.
Click here to see how this site uses Cookies. View our privacy policy here.