Influence of electron donor and acceptor substituents on the excited state properties of rhenium(I) tetracarbonyl chelate complexes

(Note: The full text of this document is currently only available in the PDF Version )

Frederik W. M. Vanhelmont, Melath V. Rajasekharan, Hans U. Güdel, Silvia C. Capelli, Jürg Hauser and Hans-Beat Bürgi


Abstract

The new complexes [Re(CO)4(meppy)], [Re(CO)4(dmdcb)]PF6 and [Re(CO)4(dmeob)][CF3SO3] [Hmeppy = 3-methyl-2-phenylpyridine, dmdcb = 4,4′-di(methoxycarbonyl)-2,2′-bipyridine and dmeob = 4,4′-dimethoxy-2,2′-bipyridine] have been synthesized. The crystal and molecular structure of [Re(CO)4(meppy)] was determined by X-ray diffraction. High-resolution optical absorption, luminescence and Raman spectroscopy on single crystals and glasses at cryogenic temperatures revealed the lowest excited state for all complexes as a nominally 3π–π* ligand centered state with some 1MLCT character mixed in by spin–orbit coupling. This leads to the occurrence of metal–ligand vibrational sidebands in the absorption and luminescence spectra. The lowest excited state has a charge-transfer character of 1.7, 1.3 and 1.0% for [Re(CO)4(meppy)], [Re(CO)4(dmdcb)]PF6 and [Re(CO)4(dmeob)][CF3SO3], respectively. These results are compared with those for the unsubstituted complexes [Re(CO)4(ppy)] and [Re(CO)4(bpy)]PF6 (Hppy = 2-phenylpyridine and bpy = 2,2′-bipyridine). The influence of the σ-donor group on the energy of the excited states and on the mixing of 1MLCT in the 3LC state is negligibly small. π-Electron donor substituents increase the energy of the excited states and increase the singlet–triplet splittings; π-electron withdrawing groups have the opposite effect and increase the 1MLCT character in the first excited state. The luminescence decay of [Re(CO)4(meppy)] is not single exponential due to a large inhomogeneous distribution of chromophores in the glass. This large distribution is due to the steric interaction of the methyl group with the phenyl part of the ligand.


References

  1. A. Juris, V. Balzani, F. Barigeletti, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85 CrossRef CAS.
  2. T. J. Meyer, Acc. Chem. Res., 1989, 22, 163 CrossRef CAS.
  3. O. Kohle, S. Ruile and M. Grätzel, Inorg. Chem., 1996, 35, 4779 CrossRef CAS; R. Argazzi, C. A. Bignozzi, T. A. Heimer and G. J. Meyer, Inorg. Chem., 1997, 36, 2 CrossRef CAS.
  4. H. Hori, F. P. A. Johnson, K. Koike, O. Ishitani and T. Ibusuki, J. Photochem. Photobiol. A, 1996, 96, 171 CrossRef CAS.
  5. B. O'Regan and M. Grätzel, Nature (London), 1991, 353, 737 CrossRef CAS.
  6. M. T. Indelli, F. Scandola, I. Flamigni, J.-P. Collin, J.-P. Sauvage and A. Sour, Inorg. Chem., 1997, 36, 4247 CrossRef CAS.
  7. L. Karki and J. T. Hupp, Inorg. Chem., 1997, 36, 3318 CrossRef CAS.
  8. G. Frei, A. Zilian, A. Raselli, H. U. Güdel and H.-B. Bürgi, Inorg. Chem., 1992, 31, 4766 CrossRef CAS.
  9. M. G. Colombo and H. U. Güdel, Inorg. Chem., 1993, 32, 3081 CrossRef CAS.
  10. M. G. Colombo, A. Hauser and H. U. Güdel, Inorg. Chem., 1993, 32, 3088 CrossRef CAS.
  11. M. G. Colombo, A. Hauser and H. U. Güdel, Top. Curr. Chem., 1994, 171, 144.
  12. M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Güdel, M. Förtsch and H.-B. Bürgi, Inorg. Chem., 1994, 33, 545 CrossRef CAS.
  13. G. F. Strouse, H. U. Güdel, V. Bertolasi and V. Ferretti, Inorg. Chem., 1995, 34, 5578 CrossRef CAS.
  14. G. F. Strouse and H. U. Güdel, Inorg. Chim. Acta, 1995, 240, 453 CrossRef CAS.
  15. F. W. M. Vanhelmont, G. F. Strouse, H. U. Güdel, A. C. Stückl and H. W. Schmalle, J. Phys. Chem. A, 1997, 101, 2946 CrossRef CAS.
  16. F. W. M. Vanhelmont, H. U. Güdel, M. Förtsch and H.-B. Bürgi, Inorg. Chem., 1997, 36, 5512 CrossRef CAS.
  17. L. A. Worl, R. Duesing, P. Chen, L. Della Ciana and T. J. Meyer, J. Chem. Soc., Dalton Trans., 1991, 849 RSC.
  18. A. Juris, S. Campagna, I. Bidd, J.-M. Lehn and R. Ziessel, Inorg. Chem., 1988, 27, 4007 CrossRef CAS.
  19. A. R. Oki and R. J. Morgan, Synth. Commun., 1995, 25, 4093 CrossRef CAS.
  20. L. Della Ciana, W. J. Dressick and A. von Zelewsky, J. Heterocycl. Chem., 1990, 27, 163 Search PubMed.
  21. G. Maecker and F. H. Case, J. Am. Chem. Soc., 1958, 80, 2745 CrossRef CAS.
  22. R. J. Shaver and D. P. Rillema, Inorg. Chem., 1992, 31, 4101 CrossRef CAS.
  23. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  24. CACAO, Computer Aided Composition of Atomic Orbitals, C. Mealli and D. Proserpio, J. Chem. Educ., 1990, 67, 399 Search PubMed.
  25. R. Hoffmann, J. Chem. Phys., 1963, 39, 1397 CrossRef CAS.
  26. A. Dedieu, T. A. Albright and R. Hoffmann, J. Am. Chem. Soc., 1979, 101, 3141 CrossRef CAS.
  27. E. V. Dehmlov and A. Sleegers, Liebigs Ann. Chem., 1992, 953 Search PubMed.
  28. D. E. Lacky, B. J. Pankuch and G. A. Crosby, J. Phys. Chem., 1980, 84, 2068 CrossRef CAS.
  29. H. Riesen, L. Wallace and E. Krausz, Mol. Phys., 1996, 87, 1299 CrossRef CAS.
  30. E. Krausz and H. Riesen, Comments Inorg. Chem., 1993, 14, 323.
  31. Y. Komada, S. Yamauchi and N. Hirota, J. Phys. Chem., 1986, 90, 6425 CrossRef CAS.
  32. H. Riesen, E. Krausz and L. Wallace, J. Phys. Chem., 1992, 96, 3621 CrossRef CAS and refs. therein.
  33. M. Maestri, D. Sandrini, V. Balzani, U. Maeder and A. von Zelewsky, Inorg. Chem., 1987, 26, 1323 CrossRef CAS.
  34. A. P. Suisalu, A. L. Kamyshnyi, V. N. Zakharov, L. A. Aslanov and R. A. Avarmaa, Chem. Phys. Lett., 1987, 134, 617 CrossRef CAS.
  35. J. Michl and E. W. Thulstrup, Spectroscopy with Polarized Light, Verlag Chemie, New York, 1986, ch. 2 Search PubMed.
  36. F. O. Garces, K. A. King and R. J. Watts, Inorg. Chem., 1988, 27, 3464 CrossRef CAS.
  37. S. A. Fredericks, J. C. Luong and M. S. Wrighton, J. Am. Chem. Soc., 1979, 101, 7415 CrossRef CAS.
  38. F. W. M. Vanhelmont and H. U. Güdel, unpublished work.
  39. K. Kalyanasundaram and Md. K. Nazeeruddin, Chem. Phys. Lett., 1992, 193, 292 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.