A unified mechanism for the stoichiometric reduction of H+ and C2H2 by [Fe4S4(SPh)4]3– in MeCN

(Note: The full text of this document is currently only available in the PDF Version )

Karin L. C. Grönberg, Richard A. Henderson and Kay E. Oglieve


Abstract

The kinetics and mechanisms of the conversions of H+ into H2 and C2H2 into C2H4 by [Fe4S4(SPh)4]3–, using [Hlut]+ (lut = 2,6-dimethylpyridine) as the proton source, have been investigated in MeCN. At high concentrations of [Hlut]+, [Fe4S4(SPh)4]3– rapidly binds three protons to give [Fe4S2(SH)2(SPh)3(SHPh)], and it is only in this protonation state that the cluster is capable of transforming the substrates. Kinetic studies indicated that subsequent dissociation of the thiol from [Fe4S2(SH)2(SPh)3(SHPh)] to generate [Fe4S2(SH)2(SPh)3] is also essential for H2 and C2H4 production. It is proposed that the vacant site on one of the Fe atoms allows protonation of this Fe by [Hlut]+ to form [Fe4HS2(SH)2(SPh)3]+. Reduction of this species by another molecule of reduced cluster {probably [Fe4S2(SH)2(SPh)3(SHPh)]} gives the “super-reduced” cluster [Fe4HS2(SH)2(SPh)3] {and [Fe4S2(SH)2(SPh)3(SHPh)]+}. Subsequently the “super-reduced” cluster releases H2 and produces [Fe4S2(SH)2(SPh)3(SHPh)]+. In the presence of C2H2, [Fe4HS2(SH)2(SPh)3]+ binds the alkyne to form [Fe4HS2(SH)2(SPh)3(C2H2)]+. Subsequent reduction (as above) produces the “super-reduced” [Fe4HS2(SH)2(SPh)3(C2H2)], then C2H4. However, binding C2H2 does not completely suppress H2 formation and [Fe4HS2(SH)2(SPh)3(C2H2)] produces H2ca. 30% of the time. The results of earlier studies on the reduction of H+ and C2H2 by structurally analogous Fe–S-based clusters are discussed and shown to be consistent with this mechanism.


References

  1. R. H. Holm, P. Kennepohl and E. I. Solomon, Chem. Rev., 1996, 96, 2239 CrossRef CAS and refs. therein.
  2. R. Cammack, Adv. Inorg. Chem., 1988, 32, 297 CAS and refs. therein.
  3. D. J. Evans, R. A. Henderson and B. E. Smith, Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York, 1993, p. 89 and refs. therein Search PubMed.
  4. M. W. W. Adams, Biochim. Biophys. Acta, 1990, 1020, 115 CAS and refs. therein.
  5. J. Kim, D. Woo and D. C. Rees, Biochemistry, 1993, 32, 7104 CrossRef CAS and refs. therein.
  6. T. Yamamura, G. Christou and R. H. Holm, Inorg. Chem., 1983, 22, 939 CrossRef CAS.
  7. R. S. McMillan, J. Renauld, J. G. Reynolds and R. H. Holm, J. Inorg. Biochem., 1979, 11, 213 CrossRef CAS.
  8. L. J. Laughlin and D. Coucouvanis, J. Am. Chem. Soc., 1995, 117, 3118 CrossRef CAS.
  9. D. Coucouvanis, J. Bioinorg. Chem., 1996, 1, 594 Search PubMed and refs. therein.
  10. G. Christou, P. K. Mascharak, W. H. Armstrong, G. C. Papaefthymiou, R. B. Frankel and R. H. Holm, J. Am. Chem. Soc., 1982, 104, 2820 CrossRef CAS.
  11. R. E. Palermo, P. P. Power and R. H. Holm, Inorg. Chem., 1982, 21, 173 CrossRef CAS.
  12. R. E. Palermo, R. Singh, J. K. Bashkin and R. H. Holm, J. Am. Chem. Soc., 1984, 106, 2600 CrossRef CAS.
  13. J. Cambray, R. W. Lane, A. G. Wedd, R. W. Johnson and R. H. Holm, Inorg. Chem., 1977, 16, 2565 CrossRef CAS.
  14. K. S. Hagen, A. D. Watson and R. H. Holm, Inorg. Chem., 1984, 23, 2984 CrossRef CAS.
  15. G. B. Wong, M. A. Bobrik and R. H. Holm, Inorg. Chem., 1978, 17, 578 CrossRef CAS.
  16. R. H. Holm, Chem. Soc. Rev., 1981, 10, 455 RSC and refs. therein.
  17. E. J. Laskowski, R. B. Frankel, W. O. Gillum, G. C. Papaefthymiou, J. Renauld, J. A. Ibers and R. H. Holm, J. Am. Chem. Soc., 1978, 100, 5322 CrossRef CAS.
  18. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1998, 1731 RSC.
  19. K. L. C. Grönberg and R. A. Henderson, J. Chem. Soc., Dalton Trans., 1996, 3667 RSC and refs. therein.
  20. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1993, 1467 RSC.
  21. K. Izutsu, Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, Blackwell, Oxford, 1990, ch. 2 Search PubMed.
  22. J. G. Reynolds, C. L. Coyle and R. H. Holm, J. Am. Chem. Soc., 1980, 102, 4350 CrossRef CAS.
  23. K. Tanaka, M. Nakamoto, M. Tsunomori and T. Tanaka, Chem. Lett., 1987, 613 CAS.
  24. R. A. Henderson, D. J. Lowe and P. Salisbury, J. Organomet. Chem., 1995, 489, C22 CrossRef CAS.
  25. R. A. Henderson, Angew. Chem., 1996, 35, 946 CAS and refs. therein.
  26. B. V. Pamphilis, B. A. Averill, T. Herskovitz, L. Que jnr. and R. H. Holm, J. Am. Chem. Soc., 1974, 96, 4159 CrossRef CAS.
  27. J. R. Dilworth, R. A. Henderson, P. Dahlstrom, T. Nicholson and J. A. Zubieta, J. Chem. Soc., Dalton Trans., 1987, 529 RSC.
  28. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1993, 1473 RSC and refs. therein.
  29. R. A. Henderson, J. Chem. Soc., Dalton Trans., 1982, 917 RSC.
  30. R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, VCH, Weinheim, 1991, ch. 1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.