Complexation of Ni2+ and Cu2+ by tripodal amine phenol ligands in aqueous solution[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ashley K. W. Stephens and Chris Orvig


Abstract

The complexation of Ni2+ and Cu2+ by the tripodal amine phenol ligands 1,2,3-tris(2-hydroxy-5-sulfobenzylamino)propane (H6TAPS) and 1,1,1-tris(2-hydroxy-5-sulfobenzylaminomethyl)ethane (H6TAMS) has been studied by potentiometry and UV/VIS spectrophotometry. Both metals form [M(H3L)], [M(H2L)]2–, [M(HL)]3– and [ML]4– complexes and in addition Cu2+ forms [ML(OH)]5– complexes. The complex formation constants for these species have been measured at 25 °C (I = 0.16 M NaCl): for Cu2+ (Ni2+) with H6TAPS log K{[M(H3L)]} = 41.73 (36.88), log K{[M(H2L)]2–} = 38.53 (31.86), log K{[M(HL)]3–} = 34.45 (25.79), log K{[ML]4–} = 28.07 (17.53) and log K{[ML(OH)]5-} = 18.96. The corresponding values for H6TAMS are 40.20 (36.96), 35.99 (31.91), 29.40 (26.33), 20.20 (18.82) and 9.68. The co-ordination number and geometry of these complexes was investigated by variable pH UV/VIS spectrophotometry; Ni2+ and Cu2+ show differing complexation behaviour. With both H6TAPS and H6TAMS, Ni2+ is co-ordinated by all six ligand donor atoms, probably in an octahedral manner. In the Cu2+ complexes the axial sites are only weakly co-ordinating: with H6TAPS the ligand uses an N3O2 donor set to bind Cu2+ and the sixth site is occupied by either hydroxide or phenolate oxygen; with H6TAMS, the ligand uses either an N2O3 or an N3O2 donor set to bind Cu2+, and hydroxide co-ordinates in the sixth position.


References

  1. A. D. Watson, J. Alloys Compd., 1994, 207/208, 14 CrossRef.
  2. K. Kumar, T. Jin, X. Wang, J. F. Desreux and M. F. Tweedle, Inorg. Chem., 1994, 33, 3823 CrossRef CAS.
  3. O. Kahn, Struct. Bonding (Berlin), 1987, 68, 89 CAS; Adv. Inorg. Chem., 1995, 43, 179 Search PubMed; Molecular Magnetism, VCH, New York, 1993 Search PubMed.
  4. E. K. Brechin, S. G. Harris, S. Parsons and R. E. P. Winpenny, J. Chem. Soc., Dalton Trans., 1997, 1665 RSC.
  5. P. Caravan and C. Orvig, Inorg. Chem., 1997, 36, 236 CrossRef CAS.
  6. P. Caravan, M. P. Lowe, S. J. Rettig and C. Orvig, Inorg. Chem., 1998, 37, 1637 CrossRef CAS.
  7. P. W. Read and C. Orvig, unpublished work.
  8. A. E. Martell and R. J. Motekaitis, Determination and Use of Stability Constants, VCH, New York, 1988, p. 4 Search PubMed.
  9. G. Gran, Acta Chem. Scand., 1950, 4, 559 CrossRef CAS.
  10. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  11. C. F. Baes, jun. and R. E. Mesmer, The Hydrolysis of Cations, Wiley, New York, 2nd edn., 1976 Search PubMed.
  12. F. J. Rossotti and H. Rossotti, The Determination of Stability Constants and Other Equilibrium Constants in Solution, McGraw-Hill, New York, 1961 Search PubMed.
  13. T. G. Lutz, D. J. Clevette, H. R. Hoveyda, V. Karunaratne, A. Nordin, S. Sjöberg, M. Winter and C. Orvig, Can. J. Chem., 1994, 72, 1362 CAS.
  14. A. Gergely and T. Kiss, Inorg. Chim. Acta, 1976, 16, 51 CrossRef CAS.
  15. F. Röhrscheid, A. L. Balch and R. H. Holm, Inorg. Chem., 1966, 5, 1542 CrossRef CAS.
  16. W.-L. Kwik, E. Purdy and E. I. Stiefel, J. Am. Chem. Soc., 1974, 96, 1638 CrossRef CAS.
  17. E. J. Billo, Inorg. Nucl. Chem. Lett., 1974, 10, 613 Search PubMed.
  18. M. Duggan, N. Ray, B. Hathaway, G. Tomlinson, P. Brint and K. Pelin, J. Chem. Soc., Dalton Trans., 1980, 1342 RSC.
  19. J. Prue and G. Schwarzenbach, Helv. Chim. Acta, 1950, 33, 995 CrossRef CAS.
  20. A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1980, 519 RSC.
  21. S. Liu, E. Wong, V. Karunaratne, S. J. Rettig and C. Orvig, Inorg. Chem., 1993, 32, 1756 CrossRef CAS.
  22. S. Liu, E. Wong, S. J. Retting and C. Orvig, Inorg. Chem., 1993, 32, 4268 CrossRef CAS.
  23. R. D. Shannon, Acta Crystallogr., Sect A, 1976, 32, 751 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.