Spectroelectrochemical and computational studies of tetrachloro and tetrabromo oxo- and nitrido-technetium(V) and their TcVI counterparts[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

John Baldas, Graham A. Heath, Stuart A. Macgregor, Klaus H. Moock, Sandra C. Nissen and Raphael G. Raptis


Abstract

The technetium complexes [NBu4][TcVINX4] and [NBu4][TcVOX4] (X = Cl or Br) have been studied by electrochemical and theoretical methods. The redox potentials of the halide complexes are strongly affected by the introduction of axial O2– or N3– ligands. The TcVI/V couple decreases from +1.84 V for [TcOCl4]0/– to +0.21 V for [TcNCl4]–/2–. In situ spectroelectrochemical techniques were employed to characterise d1 TcVIOCl4 (by oxidation) and d2 [TcVNX4]2– (by reduction) in solution. However, the oxidation of [TcOBr4] at +1.73 V is chemically irreversible. The featureless visible spectra of the TcV species contrast markedly with the wealth of charge-transfer bands found for the TcVI chromophores. In-plane {X4} → TcVI (dxy) transitions are precluded by the low-spin (dxy)2 configuration induced by the axial perturbation (by O2– or N3–) of the dπ levels. Density functional calculations were used to analyse the trend in redox potentials and electronic spectra, and, in particular, to resolve additional complexities of the visible CT spectra of the five-co-ordinate d1 [TcNX4] (X = Cl or Br) dissolved in non-co-ordinating solvents. These relatively complicated spectra closely resemble the visible reflectance spectra measured for the unambiguously five-co-ordinate [NBu4][TcNX4] salts in the solid state, whereas the absorption spectra of the nitrido complexes dissolved in aqueous HX suggest the presence of the corresponding six-co-ordinate d1trans-[TcNX4(H2O)] complex.


References

  1. J. Baldas, Top. Curr. Chem., 1996, 176, 37 CAS; Adv. Inorg. Chem., 1994, 41, 1 Search PubMed.
  2. K. H. Moock, S. A. Macgregor, G. A. Heath, S. Derrick and R. T. Boeré, J. Chem. Soc., Dalton Trans., 1996, 2067 RSC.
  3. J. Baldas, J. F. Boas, J. Bonnyman and G. A. Williams, J. Chem. Soc., Dalton Trans., 1984, 2395 RSC.
  4. W. Preetz and G. Peters, Z. Naturforsch., Teil B, 1980, 35, 1355 Search PubMed.
  5. C. M. Duff and G. A. Heath, Inorg. Chem., 1991, 30, 2528 CrossRef CAS.
  6. C. M. Duff and G. A. Heath, J. Chem. Soc., Dalton Trans., 1991, 2401 RSC.
  7. J. B. Raynor, T. J. Kemp and A. M. Thyer, Inorg. Chim. Acta, 1992, 193, 191 CrossRef CAS; R. Kirmse, K. Kohler, U. Abram, R. Bottcher, L. Golic and E. de Boer, Chem. Phys., 1990, 143, 75 CrossRef CAS; K. Kohler, R. Kirmse, R. Bottcher, U. Abram, M. C. M. Gribnau, C. P. Keijzers and E. de Boer, Chem. Phys., 1990, 143, 83 CrossRef.
  8. A. Neuhaus, A. Veldkamp and G. Frenking, Inorg. Chem., 1994, 33, 5278 CrossRef CAS.
  9. P. A. Reynolds, B. N. Figgis, J. B. Forsyth and F. Tasset, J. Chem. Soc., Dalton Trans., 1997, 1447 RSC.
  10. K. H. Moock and S. A. Macgregor, 1997, Inorg. Chem., 1998, in the press Search PubMed.
  11. S. Brownstein, G. A. Heath, A. Sengupta and D. W. A. Sharp, J. Chem. Soc., Chem. Commun., 1983, 669 RSC.
  12. G. A. Heath, K. H. Moock, D. W. A. Sharp and L. J. Yellowlees, J. Chem. Soc., Chem. Commun., 1985, 1503 RSC.
  13. K. H. Moock and M. H. Rock, J. Chem. Soc., Dalton Trans., 1993, 2459 RSC.
  14. R. W. Thomas, M. J. Heeg, R. C. Elder and E. Deutsch, Inorg. Chem., 1985, 24, 1472 CrossRef CAS.
  15. J. Baldas, J. F. Boas and J. Bonnyman, J. Chem. Soc., Dalton Trans., 1987, 1721 RSC; J. Baldas, J. F. Boas, B. D. James and Z. Ivanov, Transition Met. Chem., 1997, 22, 74 CrossRef CAS.
  16. J. Baldas, J. Bonnyman and G. A. Williams, Aust. J. Chem., 1985, 38, 215 CAS.
  17. R. Colton and I. B. Tomkins, Aust. J. Chem., 1968, 21, 1981 CAS; A. Guest and C. J. L. Lock, Can. J. Chem., 1972, 50, 1807 CAS.
  18. J. Baldas and S. F. Colmanet, Aust. J. Chem., 1989, 42, 1155 CAS.
  19. R. Hübener and U. Abram, Z. Anorg. Allg. Chem., 1992, 617, 96 CrossRef.
  20. P. D. Lyne and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1995, 1635 RSC.
  21. R. J. Deeth, J. Chem. Soc., Dalton Trans., 1991, 1895 RSC.
  22. B. N. Figgis, P. A. Reynolds and J. W. Cable, J. Chem. Phys., 1993, 98, 7743 CrossRef CAS.
  23. M. D. Carducci, C. Brown, E. I. Soloman and J. H. Enemark, J. Am. Chem. Soc., 1994, 116, 11 856 CrossRef CAS; D. M. Sabel and A. A. Gewirth, Inorg. Chem., 1994, 33, 148 CrossRef CAS; D. Collison, J. Chem. Soc., Dalton Trans., 1990, 2999 RSC.
  24. E. I. Solomon, Comments Inorg. Chem., 1984, 3, 227.
  25. A. Van der Avoird and P. Ros, Theor. Chim. Acta, 1966, 13 CrossRef CAS.
  26. G. A. Heath and J. E. McGrady, J. Chem. Soc., Dalton Trans., 1994, 3759 RSC.
  27. K. H. Moock, Ph.D. Thesis, University of Glasgow, 1985, p. 176.
  28. S. C. Nissen, Ph.D. Thesis, Australian National University, 1997; L. J. Yellowlees and K. H. Moock, unpublished measurements.
  29. A. B. P. Lever, Inorg. Chem., 1990, 29, 1271 CrossRef CAS.
  30. J. Baldas, J. F. Boas, Z. Ivanov and B. D. James, Inorg. Chim. Acta, 1993, 204, 199 CrossRef CAS.
  31. G. A. Heath and D. G. Humphrey, J. Chem. Soc., Chem. Commun., 1991, 1668 RSC.
  32. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 1984, 2nd edn., p. 739 Search PubMed.
  33. G. A. Heath and R. G. Raptis, Inorg. Chem., 1991, 30, 4108 CrossRef CAS; J. E. McGrady, Ph.D. Thesis, Australian National University, 1994.
  34. J. Baldas, B. D. James and Z. Ivanov, in preparation.
  35. J. G. Snijders, E. J. Baerends and P. Ros, Mol. Phys., 1979, 38, 1909 CAS.
  36. J. C. Bryan, A. K. Burrell, M. M. Miller, W. H. Smith, C. J. Burns and A. P. Sattelberger, Polyhedron, 1993, 22, 1695.
  37. E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41 CrossRef CAS; E. J. Baerends, J. G. Snijders, C. A. de Lange and G. Jonkers, Local Density Approximations in Quantum Chemistry and Solid State Physics, eds. J. P. Dahl and J. Avery, Plenum, New York, 1984 Search PubMed.
  38. G. te Velde and E. J. Baerends, J. Comp. Phys., 1992, 99, 84 Search PubMed.
  39. J. G. Snijders, E. J. Baerends and P. Vernooijs, At. Data Nucl. Data Tables, 1982, 26, 483 CrossRef; P. Vernooijs, J. G. Snijders and E. J. Baerends, Slater Type Basis Functions for the whole Periodic System, Internal Report, Free University of Amsterdam, 1981 Search PubMed.
  40. J. Krijn and E. J. Baerends, Fit Functions in the HFS-method, Internal Report, Free University of Amsterdam, 1984 Search PubMed.
  41. O. Gunnarsson, B. I. Lundqvist and J. W. Wilkins, Phys. Rev. B, 1974, 10, 1319 CrossRef CAS; O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B, 1976, 13, 4274 CrossRef CAS; O. Gunnarsson, M. Jonson and B. I. Lundqvist, Phys. Rev. B, 1979, 20, 3136 CrossRef CAS.
  42. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  43. L. Versluis and T. Ziegler, J. Chem. Phys., 1988, 88, 322 CrossRef CAS.
  44. T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders and W. Ravenek, J. Phys. Chem., 1989, 93, 3050 CrossRef CAS; R. van Leeuwen, E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1994, 101, 1272 CrossRef CAS.
  45. A. D. Becke, J. Chem. Phys., 1986, 84, 4524 CrossRef CAS.
  46. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.