Theoretical and experimental studies of the protonated terpyridine cation. Ab initio quantum mechanics calculations, and crystal structures of two different ion pairs formed between protonated terpyridine cations and nitratolanthanate(III) anions[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Michael G. B. Drew, Michael J. Hudson, Peter B. Iveson, Mark L. Russell, Jan-Olov Liljenzin, Mats Sklberg, Lena Spjuth and Charles Madic


Abstract

Ab initio quantum mechanics calculations have been carried out on all possible conformations of the terpyridine ligand and its mono- and di-protonated forms. Results show that the lowest energy form of the ligand is when the N–C–C–N torsion angles are trans but that in the protonated forms, the cis arrangement is prevalent being stabilised by intramolecular N–H[hair space][hair space]· · ·[hair space][hair space]N hydrogen bonds. Results are consistent with the experimental crystal structure data found in the literature and also with two crystal structures reported here in which two different ion pairs formed between protonated terpyridine cations and lanthanate(III) nitrate anions have been prepared and analysed structurally. Compound 1 consists of discrete diprotonated terpyridine cations and hexanitratolanthanate anions, namely 3[H2terpy]2+2[La(NO3)6]3–·3H2O. Water molecules are present as hydrogen bond acceptors in the diprotonated terpyridyl cavities. Each lanthanum atom is 12-co-ordinate and the La–O bond lengths vary between 2.609(11) and 2.765(10) Å. Compound 2 consists of a diprotonated [H2terpy]2+ cation together with a [Sm(terpy)(NO3)4] anion, and a NO3 anion which is present as a hydrogen bond acceptor in the diprotonated terpyridyl cavity. The samarium atom is 11-co-ordinate, the Sm–O bond lengths vary between 2.494(5) and 2.742(5) Å while the Sm–N bond lengths vary between 2.626(4) and 2.650(5) Å.


References

  1. K. L. Nash, Solvent Extraction and Ion Exchange, 1993, 11, 729 Search PubMed.
  2. G. Y. S. Chan, M. G. B. Drew, M. J. Hudson, N. S. Isaacs, P. Byers and C. Madic, Polyhedron, 1996, 15, 3385 CrossRef CAS.
  3. E. C. Constable, Adv. Inorg. Chem., 1986, 30, 69 CAS.
  4. C. J. Kepert, L. Weimin, B. W. Skelton and A. H. White, Aust. J. Chem., 1994, 47, 365.
  5. I. Hagström, L. Spjuth, Å. Enarsson, J. O. Liljenzin, M. Skålberg, M. J. Hudson, P. B. Iveson, P. Y. Cordier, C. Hill and C. Madic, Solvent Extraction and Ion Exchange, in the press Search PubMed.
  6. A referee has commented that adding concentrated nitric acid to a methanol solution is highly dangerous. For this reason, as stated, we used extremely small quantities.
  7. W. Kabsch, J. Appl. Crystallogr., 1988, 21, 916 CrossRef CAS.
  8. G. M. Sheldrick SHELXS, program for structure determination, University of Göttingen, 1997.
  9. N. Walker and D. Stuart, DIFABS, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
  10. G. M. Sheldrick, SHELXL, program for crystal structure refinement, University of Göttingen, 1997.
  11. C. J. Kepert, B. W. Skelton and A. H. White, Aust. J. Chem., 1994, 47, 391 CAS.
  12. J. G. Bergman and F. A. Cotton, Inorg. Chem., 1966, 5, 1208 CrossRef CAS.
  13. A. Hergold-Brundic, Z. Popovic and D. Matkovic-Calogovic, Acta Crystallogr., Sect. C, 1996, 52, 3154 CrossRef.
  14. M. Frechette and C. Bensimon, Inorg. Chem., 1995, 34, 3520 CrossRef CAS.
  15. J. H. Burns, Inorg. Chem., 1979, 18, 3044 CrossRef CAS.
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challalcombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andrews, E. S. Replogle, R. Gomperts, R. L. Martin, D. L. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Revision A1, Gaussian, Inc., Pittsburgh, PA, 1995.
  17. CERIUS2 software, Molecular Simulations Inc., San Diego, CA, 1997.
  18. For all the structures reported here, geometry optimisation was carried out with no constraints and no imposed symmetry. It is possible particularly in cases where intramolecular ‘bonds’ are present that basisset superposition errors may not be negligible but a detailed investigation is beyond the scope of this paper.
  19. C. A. Bessel, R. F. See, D. L. Jameson, M. R. Churchill and K. J. Takeuchi, J. Chem. Soc., Dalton Trans., 1992, 3223 RSC.
  20. E. C. Constable, J. Lewis, M. C. Liptrot and P. R. Raithby, Inorg. Chim. Acta, 1990, 178, 47 CrossRef CAS.
  21. G. D. Storrier, S. B. Colbran and D. C. Craig, J. Chem. Soc., Dalton Trans., 1997, 3011 RSC.
  22. E. C. Constable, A. M. W. C. Thompson, D. A. Tocher and M. A. M. Daniels, New. J. Chem., 1992, 16, 855 Search PubMed.
  23. D. Armspach, E. C. Constable, C. D. Housecroft, M. Neuburger and M. Zehnder, New. J. Chem., 1996, 20, 331 Search PubMed.
  24. E. C. Constable, S. M. Elder, J. Healy and D. A. Tocher, J. Chem. Soc., Dalton Trans., 1990, 1669 RSC.
  25. K. T. Potts, K. A. G. Raiford and M. Keshavarz, J. Am. Chem. Soc., 1993, 115, 2793 CrossRef CAS.
  26. L. Prasad and F. E. Smith, Acta Crystallogr., Sect. B, 1982, 38, 1815 CrossRef.
  27. E. C. Constable, S. M. Elder, J. V. Walker, P. D. Wood and D. A. Tocher, J. Chem. Soc., Chem. Commun., 1992, 229 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.