Structural and 31P CP MAS NMR spectroscopic studies of the P2CuN2 copper(I) complexes [Cu(PPh3)2(MeCN)2]X for X = PF6, BF4 and ClO4

(Note: The full text of this document is currently only available in the PDF Version )

John V. Hanna, Robert D. Hart, Peter C. Healy, Brian W. Skelton and Allan H. White


Abstract

The mixed ligand P2CuN2 copper(I) complexes [Cu(PPh3)2(MeCN)2]X have been studied by one- and two-dimensional 31P CP MAS NMR spectroscopy for X = PF6, BF4 or ClO4 and single crystal X-ray diffraction for X = PF6 and ClO4, completing availability of precise structural data for this isomorphous series. The compounds crystallise as discrete cations and anions in space group P[hair space]21/n with a ≈ 15, b ≈ 27, c ≈ 9 Å, β = 95°, Z = 4. The anion is located ca. 6 Å from the copper atom and adjacent to a cleft formed between the acetonitrile ligands and phosphine ligand 2 while the crystallographically independent PPh3 ligands adopt staggered three-bladed propeller-type conformations of opposite chirality. The geometric symmetry of the P2CuN2 co-ordination sphere is low with Cu–P(1) 2.276(4)–2.287(2), Cu–P(2) 2.258(4)–2.269(1) Å, Cu–N 2.023(9)–2.053(3) Å, P–Cu–P 126.82(4)–127.73(5), N–Cu–N 99.5(4)–100.3(1), P(1)–Cu–N 100.87(8)–102.34(9) and P(2)–Cu–N 110.4(1)–111.9(3)°. One- and two-dimensional solid state 31P CP MAS NMR spectra of the compounds at 9.40 T show chemical shift differences of 6 ppm between the signals arising from the two P sites which form part of an ABX spin system with 1J[hair space][31P(1)–63Cu] 1.13–1.14 kHz, 1J[hair space][31P(2)–63Cu] 1.30 kHz and 2J[hair space](31P–31P) 75 Hz. The copper quadrupolar induced distortion of the line spacings is different for the two sites and is postulated to be a consequence of variation in the angle between the Cu–P vectors and the z axis of the electric field gradient tensor. The magnitude of the distortion is relatively small and consistent with small copper quadrupolar coupling constants for the compounds and a balanced electronic charge distribution about the copper(I) site in spite of the low geometric symmetry of the P2CuN2 co-ordination sphere.


References

  1. E. W. Ainscough, E. N. Baker, M. L. Brader, A. M. Brodie, S. L. Ingham, J. M. Waters, J. V. Hanna and P. C. Healy, J. Chem. Soc., Dalton Trans., 1991, 1243 RSC.
  2. A. Avdeef and J. P. Fackle, J. Coord. Chem., 1975, 4, 211 CAS.
  3. G. A. Bowmaker, J. C. Dyason, P. C. Healy, L. M. Engelhardt, C. Pakawatchai and A. H. White, J. Chem. Soc., Dalton Trans., 1987, 1089 RSC.
  4. M. A. Cabras, L. Naldini, M. A. Zoroddu, F. Cariati, F. Demartin, N. Masciocchi and M. Sansoni, Inorg. Chim. Acta, 1985, 104, L19 CrossRef CAS.
  5. D. J. Darensbourg, M. W. Holtcamp, B. Khandelwal and J. H. Reibenspies, Inorg. Chem., 1995, 34, 5390 CrossRef CAS.
  6. R. D. Hart, P. C. Healy, G. A. Hope, D. W. Turner and A. H. White, J. Chem. Soc., Dalton Trans., 1994, 773 RSC.
  7. R. D. Hart, P. C. Healy, M. L. Peake and A. H. White, Aust. J. Chem., 1998, 51, 67 CrossRef CAS.
  8. S. J. Lippard and G. J. Palenik, Inorg. Chem., 1971, 10, 1322 CrossRef CAS.
  9. I. G. Dance, M. L. Scudder and L. J. Fitzpatrick, Inorg. Chem., 1985, 24, 2547 CrossRef CAS.
  10. P. F. Barron, J. C. Dyason, L. M. Engelhardt, P. C. Healy and A. H. White, Aust. J. Chem., 1985, 38, 261 CAS.
  11. J. Diez, S. Falagan, P. Gamasa and J. Gimeno, Polyhedron, 1988, 7, 37 CrossRef CAS.
  12. J. Green, E. Sinn and S. Woodward, Polyhedron, 1993, 12, 991 CrossRef CAS.
  13. A. M. Leiva, L. Rivera and B. Loeb, Polyhedron, 1991, 10, 347 CrossRef CAS.
  14. E. M. Menger and W. S. Veeman, J. Magn. Reson., 1982, 46, 257 CAS.
  15. R. K. Harris and A. C. Olivieri, Prog. Nucl. Magn. Reson. Spectrosc., 1992, 24, 435 CrossRef CAS.
  16. J. V. Hanna, M. E. Smith, S. N. Stuart and P. C. Healy, J. Phys. Chem., 1992, 96, 7560 CrossRef CAS.
  17. A. Olivieri, J. Am. Chem. Soc., 1992, 114, 5758 CrossRef CAS.
  18. S. H. Alarcon, A. C. Olivieri and R. K. Harris, Solid State Nucl. Magn. Reson., 1993, 2, 325 CrossRef CAS.
  19. S. R. Hall, H. D. Flack and J. M. Stewart, The Xtal 3.2 Reference Manual, Universities of Western Australia, Geneva and Maryland, 1992 Search PubMed.
  20. C. Bianchini, C. A. Ghilardi, D. Masi, A. Meli and A. Orlandini, Cryst. Struct. Commun., 1982, 11, 1495 Search PubMed.
  21. L. M. Engelhardt, C. Pakawatchai, A. H. White and P. C. Healy, J. Chem. Soc., Dalton Trans., 1985, 125 RSC.
  22. S. J. Lippard and K. M. Melmed, J. Am. Chem. Soc., 1967, 89, 3929 CrossRef CAS.
  23. J. R. Kirchhoff, D. R. McMillin, W. R. Robinson, D. R. Powell, A. T. McKenzie and S. Chen, Inorg. Chem., 1985, 24, 3928 CrossRef CAS.
  24. F. Asaro, A. Camus, R. Gobetto, A. C. Olivieri and G. Pellizer, Solid State NMR, 1997, 8, 81 CrossRef CAS.
  25. J. W. Diesveld, E. M. Menger, H. T. Edzes and W. S. Veeman, J. Am. Chem. Soc., 1980, 102, 7935 CrossRef CAS.
  26. G. Wu and R. E. Wasylishen, Inorg. Chem., 1996, 35, 3113 CrossRef CAS.
  27. D. Dakternieks, Inorg. Chim. Acta, 1984, 89, 209 CrossRef CAS.
  28. T. Allman and R. E. Lenkinski, Inorg. Chem., 1986, 25, 3202 CrossRef CAS.
  29. G. A. Bowmaker, B. W. Skelton, A. H. White and P. C. Healy, J. Chem. Soc., Dalton Trans., 1988, 2825 RSC.
  30. H. Negita, M. Hiura, K. Yamada and T. Okuda, J. Mol. Struct., 1980, 58, 205 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.