Molybdenum complexes with tridentate NS2 ligands. Synthesis, crystal structures and spectroscopic properties

(Note: The full text of this document is currently only available in the PDF Version )

Lutz Stelzig, Stephan Kötte and Bernt Krebs


Abstract

Reaction of the new tridentate NS2 ligands 2-HSC6H4C(Me)[double bond, length half m-dash]NNHC(S)SCH2Ph (H2L1), 2-HSC6H4C(Me)[double bond, length half m-dash] NNHC(S)NHCPh3 (H2L2), 2-HSC6H4CH[double bond, length half m-dash]NNHC(S)NHCPh3 (H2L3) and 1-Ph-3-Me-5-HS-C3N2-CH[double bond, length half m-dash]NNC(SH)NHCPh3 (H2L4) with dioxomolybdenum(VI) precursors yielded mononuclear molybdenum(VI) complexes [MoO2(L1)(pic)] 1 (pic = 4-methylpyridine), [MoO2L2(MeOH)]·2.25 MeOH 2 and the dinuclear molybdenum(V) complexes [Mo2O3L32]·3CH2Cl2 3 and [Mo2O3L42] 4. The molecular structures of 1–3 were determined by single-crystal X-ray analysis. Complexes 1 and 2 each consist of a central cis-MoO2 unit with a mer co-ordinating tridentate dianionic ligand and one neutral donor molecule completing the octahedral environment of molybdenum(VI). Complex 3 exhibits an anti-Mo2O3 group co-ordinated by two mer chelating ligands. The symmetry-related molybdenum(V) centres are in a square pyramidal environment. Infrared, NMR and MS studies evidenced a comparable structure for 4. The reduction of the dioxomolybdenum(VI) compounds 1 and 2, achieved by addition of phosphines like PPh3, also leads to dinuclear µ-oxo-bridged complexes. The reverse oxidations of the oxomolybdenum(V) complexes are restricted by the nature of the ligand and the oxidizing agents.


References

  1. S. Padhyé and G. B. Kauffman, Coord. Chem. Rev., 1985, 63, 127 CrossRef CAS .
  2. See, for example; (a) A. Berkessel, G. Hermann, O.-T. Rauch, M. Büchner, A. Jacobi and G. Huttner, Chem. Ber., 1996, 129, 1421 CrossRef CAS ; (b) Z. Lu, C. White, A. L. Rheingold and R. H. Crabtree, Inorg. Chem., 1993, 32, 3991 CrossRef CAS ; (c) S. K. Dutta, D. B. McConville, W. J. Youngs and M. Chaudhury, Inorg. Chem., 1997, 36, 2517 CrossRef CAS ; (d) S. Bhattacharjee and R. Bhattacharyya, J. Chem. Soc., Dalton Trans., 1992, 1357 RSC ; (e) S. Bhattacharjee and R. Bhattacharyya, J. Chem. Soc., Dalton Trans., 1993, 1151 RSC ; (f) S. Purohit, A. P. Koley, L. S. Prasad, P. T. Manoharan and S. Ghosh, Inorg. Chem., 1989, 28, 3735 CrossRef CAS .
  3. J. Topich and J. T. Lyon III, Inorg. Chem., 1984, 23, 3202 CrossRef CAS .
  4. P. Barbaro, C. Bianchini, G. Scapacci, D. Masi and P. Zanello, Inorg. Chem., 1994, 33, 3180 CrossRef CAS  and refs. therein.
  5. E. I. Stiefel, Prog. Inorg. Chem., 1977, 22, 1 ; C. D. Garner and S. Bristow, in Molybdenum Enzymes, ed. T. G. Spiro, Wiley Interscience, New York, 1985, pp. 343–410 Search PubMed .
  6. J. A. Craig, E. W. Harlan, B. S. Snyder, M. A. Whitener and R. H. Holm, Inorg. Chem., 1989, 28, 2082 CrossRef CAS .
  7. J. M. Berg and R. H. Holm, J. Am. Chem. Soc., 1985, 107, 917 CrossRef CAS .
  8. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349 RSC .
  9. D. M. Baird, S. Falzone and J. E. Haky, Inorg. Chem., 1989, 28, 4561 CrossRef CAS .
  10. See, for example, R. H. Holm, Coord. Chem. Rev., 1990, 100, 183 Search PubMed ; Chem. Rev., 1987, 87, 1401 CrossRef CAS .
  11. O. A. Rajan and A. Chakravorty, Inorg. Chem., 1981, 20, 660 CrossRef CAS .
  12. M. Akbar Ali and R. Bose, J. Inorg. Nucl. Chem., 1977, 39, 265 CrossRef CAS .
  13. K. A. Jensen, U. Anthoni, B. Kägi, C. Larsen and C. T. Pedersen, Acta Chem. Scand., 1968, 22, 1 CrossRef CAS .
  14. K. Clarke, C. G. Hughes and R. M. Srowston, J. Chem. Soc., Perkin Trans. 1, 1973, 356 RSC .
  15. H. S. Kasmai and S. G. Mischke, Synthesis, 1989, 763 CrossRef CAS .
  16. J. Becher, P. H. Olesen, N. A. Knudsen and H. Toftlund, Sulfur Lett., 1986, 4, 175 Search PubMed .
  17. G. M. Sheldrick, SHELXS 86, Universität Göttingen, 1990 .
  18. G. M. Sheldrick, SHELXL 93, Universität Göttingen, 1993 .
Click here to see how this site uses Cookies. View our privacy policy here.