Spectroscopic and structural studies on adducts of silver(I) cyanide with ER3 ligands (E = P, As or Sb)

(Note: The full text of this document is currently only available in the PDF Version )

Graham A. BowmakerEffendy, Jason C. Reid, Clifton E. F. Rickard, Brian W. Skelton and Allan H. White


Abstract

The adducts AgCN∶EPh3 (E = P, As or Sb) (1∶2) and AgCN∶PPh3 (1∶1) have been characterized by room temperature single crystal structure determination and low frequency vibrational spectroscopy. The compounds AgCN∶EPh3 (E = P or As) (1∶2) [as pyridine (py) monosolvates] are isomorphous and of the form [(Ph3E)3Ag(CN)Ag(EPh3)3][Ag(CN)2], an aqua–2-methylpyridine solvate and an acetonitrile solvate also being structurally characterized for the E = P adduct. For E = Sb the complex is a simple single stranded polymer · · ·[hair space][hair space]Ag(SbPh3)2(CN)Ag(SbPh3)2(CN)[hair space][hair space]· · · as is AgCN∶PPh3 (1∶1), · · ·[hair space][hair space]Ag(PPh3)2(CN)Ag(CN)Ag(PPh3)2[hair space][hair space]· · ·. An adduct of the form AgCN∶PR3 (1∶1) is also obtained for tris(2,4,6-trimethoxyphenyl)phosphine (tmpp) as a pyridine hemisolvate, now ionic but with the pyridine loosely co-ordinated to the anion, [Ag(tmmp)2][Ag(CN)2(py)]. By contrast, in the AgCN∶P(o-tol)3 (tol = o-tolyl)∶py(1∶0.5∶0.5) adduct, Ag{P(o-tol)3}(py) moieties are linked in a single-stranded polymer by NCAgCN units, · · ·[hair space][hair space]Ag[P(o-tol)3](py)(NCAgCN)[hair space][hair space]· · ·. The structural characterization of [Ag(PPh3)3(CN)] has also been made. The far-infrared spectra of AgCN·2AgNO3, [Ag(SbPh3)2(CN)] and [Ag(SbPh3)3(CN)] show ν(AgX) bands (X = CN) at 435, 358 and 310 cm–1. The relationship between the ν(AgX) wavenumbers and the Ag–X bond lengths r(AgX) for the case of terminally bound CN groups has been established, and this has the same form as that found previously for a range of AgX complexes (X = Cl, Br or I) with phosphine and arsine ligands. The ν(AgX) wavenumbers for the CN-bridged compounds AgCN·2AgNO3 and [Ag(SbPh3)2(CN)] are about 50 cm–1 higher than those for compounds with terminal Ag–CN bonds of similar bond length. Similar behaviour is observed for the bridging CN groups in the cations of the ionic 1∶2 complexes [{Ag(EPh3)3}2CN]+[Ag(CN)2]·3py (E = P or As), where the ν(AgX) wavenumbers (301, 354 cm–1 respectively) are about 80 cm–1 higher than those predicted for terminal bonding.


References

  1. Effendy, J. D. Kildea and A. H. White, Aust. J. Chem., 1997, 50, 587 CrossRef.
  2. G. A. Bowmaker, Effendy, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1998, 2123 RSC.
  3. G. A. Bowmaker, Effendy, P. C. Junk and A. H. White, J. Chem. Soc., Dalton Trans., preceding paper Search PubMed.
  4. D. E. Hibbs, M. B. Hursthouse, K. M. Malik, M. A. Beckett and P. W. Jones, Acta Crystallogr., Sect. C, 1996, 52, 884 CrossRef.
  5. L. M. Engelhardt, P. C. Healy, V. A. Patrick and A. H. White, Aust. J. Chem., 1987, 40, 1873 CAS.
  6. G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1993, 1387 RSC.
  7. G. A. Bowmaker, Effendy, E. N. de Silva and A. H. White, Aust. J. Chem., 1997, 50, 627, 641 CrossRef.
  8. M. M. Olmstead, G. Speier and L. Szabó, J. Chem. Soc., Chem. Commun., 1994, 541 RSC.
  9. S. Gotsis, L. M. Engelhardt, P. C. Healy, J. D. Kildea and A. H. White, Aust. J. Chem., 1989, 42, 923 CAS corrigendum, Effendy, L. M. Engelhardt, P. C. Healy, B. W. Skelton and A. H. White, Aust. J. Chem., 1991, 44, 1585 Search PubMed.
  10. B. K. Teo and D. M. Barnes, Inorg. Nucl. Chem. Lett., 1976, 12, 681 Search PubMed.
  11. G. A. Bowmaker and P. C. Healy, Spectrochim. Acta, Part A, 1988, 44, 115 CrossRef.
  12. G. A. Bowmaker, P. C. Healy, J. D. Kildea and A. H. White, Spectrochim. Acta, Part A, 1988, 44, 1219 CrossRef.
  13. G. A. Bowmaker, R. D. Hart, B. E. Jones, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1995, 3063 RSC.
  14. G. A. Bowmaker, Effendy, P. J. Harvey, P. C. Healy, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1996, 2449 RSC.
  15. G. A. Bowmaker, Effendy, P. J. Harvey, P. C. Healy, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1996, 2459 RSC.
  16. G. A. Bowmaker, Effendy, J. D. Kildea and A. H. White, Aust. J. Chem., 1997, 50, 577 CrossRef.
  17. F. C. Veldkamp and G. Frenking, Organometallics, 1993, 12, 4613 CrossRef CAS.
  18. T. M. Loehr and T. V. Long, J. Chem. Phys., 1970, 53, 4182 CrossRef CAS.
  19. D. Britton and J. D. Dunitz, Acta Crystallogr., 1965, 19, 815 CrossRef CAS.
  20. A. G. Sharpe, The Chemistry of Cyano Complexes of the Transition Metals, Academic Press, London, 1976, p. 274 Search PubMed.
  21. C. Kappenstein, A. Quali, M. Guerin, J. Cernak and J. Chomic, Inorg. Chim. Acta, 1988, 147, 189 CrossRef CAS; M. Carcelli, C. Ferrari, C. Pelizzi, G. Pelizzi, G. Predieri and C. Sollinas, J. Chem. Soc., Dalton Trans., 1992, 2127 RSC; J. Cernak, M. Kanuchova, J. Chomic, I. Potocnak, J. Kamenicek and Z. Zak, Acta Crystallogr., Sect. C, 1994, 50, 1563 CrossRef.
  22. D. N. Waters and B. Basak, J. Chem. Soc. A, 1971, 2733 RSC.
  23. G. Helgesson and S. Jagner, Inorg. Chem., 1991, 30, 2574 CrossRef CAS.
  24. G. A. Bowmaker, B. J. Kennedy and J. C. Reid, Inorg. Chem., 1998, submitted Search PubMed.
  25. K. Shobatake, C. Postmus, J. R. Ferraro and K. Nakamoto, Appl. Spectrosc., 1969, 23, 12 CAS.
  26. F. W. Parrett, Spectrochim. Acta, Part A, 1970, 26, 1271 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.