Crystal engineering via negatively charged O–H[hair space][hair space]· · ·[hair space][hair space]O and charge- assisted C–Hδ+[hair space][hair space]· · ·[hair space][hair space]Oδ– hydrogen bonds from the reaction of [Co(η5-C5H5)2][OH] with polycarboxylic acids[hair space]§

(Note: The full text of this document is currently only available in the PDF Version )

Dario Braga, Alessandro Angeloni, Emilio Tagliavini and Fabrizia Grepioni


Abstract

The polycarboxylic acids C6H3(CO2H)3-1,3,5 (trimesic acid, H3tma) and O[hair space] 2,O[hair space] 3-dibenzoyl-L-tartaric acid (L-H2bta) reacted in water or thf with [Co(η5-C5H5)2][OH] prepared in situ by oxidation of [Co(η5-C5H5)2] to generate organic superanions self-assembled via negatively charged O–H[hair space][hair space]· · ·[hair space][hair space]O and neutral O–H[hair space][hair space]· · ·[hair space][hair space]O hydrogen bonds. The resulting organic host accommodates the cations via charge assisted C–Hδ+[hair space][hair space]· · ·[hair space][hair space]Oδ– hydrogen bonds between organometallic and organic components. Crystalline [Co(η5-C5H5)2]+[(H3tma)(H2tma)]·2H2O 1 was obtained as the major product from acid and base in a 1∶2 stoichiometric ratio. Compound 1 contains a complex hydrogen bonded honeycomb-type structure formed by superanions [(H3tma)(H2tma)] and water molecules. The mixed salt [Co(η5-C5H5)2]+[Co(H2O)6]2+[tma]3– 2 was obtained as a minor product from the same reaction. In crystalline 2 the water molecules of the aqua complex form hydrogen bonds with the three carboxylic groups of the organic anion resulting in a caged structure that encapsulates the [Co(η5-C5H5)2]+ cation. When dibenzoyl-L-tartaric acid was used the chiral crystal [Co(η5-C5H5)2]+[L-Hbta] 3 is obtained. The crystal contains chains of O–H[hair space][hair space]· · ·[hair space][hair space]O hydrogen bonded anions. These results are used to discuss a design strategy for the engineering of organometallic crystals with predesigned structures. Though on a limited data set, the structure of the elusive crystalline hydrate [Co(η5-C5H5)2]+[OH]·4H2O 4, which is liquid at ambient temperature, is discussed.


References

  1. Part 2, D. Braga, A. Angeloni, F. Grepioni and E. Tagliavini, Organometallics, 1997, 16, 5478 Search PubMed.
  2. D. Braga and F. Grepioni, Chem. Commun., 1996, 571 RSC; J. Hulliger, Angew. Chem., Int. Ed. Engl., 1994, 33, 143 CrossRef; C. L. Bowes and G. A. Ozin, Adv. Mater., 1986, 8, 13 Search PubMed; G. A. Ozin, Acc. Chem. Res., 1997, 30, 17 CrossRef CAS; M. J. Zaworotko, Nature (London), 1997, 386, 220 CrossRef CAS; O. M. Yaghi, L. Guangming and H. Li, Nature (London), 1995, 378, 703 CrossRef CAS; P. Ball, Nature (London), 1996, 381, 648 CrossRef CAS.
  3. A. Gavezzotti, Acc. Chem. Res., 1994, 27, 309 CrossRef CAS; H. R. Karfunkel and R. J. Gdanitz, J. Comput. Chem., 1992, 13, 1171 CrossRef CAS; R. J. Gdanitz, Chem. Phys. Lett., 1992, 190, 391 CrossRef CAS; S. J. Maginn, Acta Crystallogr., Sect. A, 1996, 52, C79; Theoretical Aspects and Computational Modeling of the Molecular Solid State, ed. A. Gavezzotti, Wiley, Chichester, 1997 Search PubMed.
  4. O. Khan, Molecular Magnetism, VCH, New York, 1993 Search PubMed; D. Gatteschi, Adv. Mater., 1994, 6, 635 Search PubMed.
  5. J. M. Williams, H. H. Wang, T. J. Emge, U. Geiser, M. A. Beno, P. C. W. Leung, K. Douglas Carson, R. J. Thorn, A. J. Schultz and M. Whangbo, Prog. Inorg. Chem., 1987, 35, 218; J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H.-H. Wang, A. M. Kini and M.-H. Whangbo, Organic Superconductors, (including Fullerenes): Syntheses, Structure, Properties and Theory, Prentice Hall, Englewood Cliffs, NJ, 1992 Search PubMed.
  6. J. S. Miller and A. J. Epstein, Angew. Chem., Int. Ed. Engl., 1994, 33, 385 CrossRef; Chem. Eng. News, 1995, 73; 30 Search PubMed.
  7. S. R. Marder, Inorg. Mater., 1992, 115 Search PubMed; N. J. Long, Angew. Chem., Int. Ed. Engl., 1995, 34, 21 CrossRef CAS; T. J. Marks and M. A. Ratner, Angew. Chem., Int. Ed. Engl., 1995, 34, 155 CrossRef CAS; D. R. Kanis, M. A. Ratner and T. J. Marks, Chem. Rev., 1994, 94, 195 CrossRef CAS.
  8. P. J. Fagan and M. D. Ward, The Crystal as a Supramolecular Entity. Perspectives in Supramolecular Chemistry, ed. G. R. Desiraju, Wiley, Chichester, 1996, vol. 2, p. 107 Search PubMed.
  9. D. Braga and F. Grepioni, Acc. Chem. Res., 1994, 27, 51 CrossRef CAS; Coord. Chem. Rev., in the press Search PubMed.
  10. G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311 CrossRef CAS; A. D. Burrows, C.-W. Chan, M. M. Chowdry, J. E. McGrady and D. M. P. Mingos, Chem. Soc. Rev., 1995, 329 RSC.
  11. D. Braga, A. L. Costa, F. Grepioni, L. Scaccianoce and E. Tagliavini, Organometallics, 1996, 15, 1084 CrossRef CAS.
  12. D. Braga and F. Grepioni, Acc. Chem. Res., 1997, 30, 81 CrossRef CAS; Current Challenges on Large Supramolecular Assemblies, ed. G. Tsoucaris, Kluwer, Dordrecht, 1998, in the press Search PubMed; D. Braga, G. Cojazzi, F. Grepioni, N. Scully and S. M. Draper, Organometallics, 1998, 17, 296 Search PubMed.
  13. (a) G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef; (b) G. M. Sheldrick, SHELXL 92, Program for Crystal Structure Determination, University of Göttingen, 1993; (c) E. Keller, SCHAKAL 92, Graphical Representation of Molecular Models, University of Freiburg, 1993; (d) A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C31.
  14. (a) D. J. Duchamp and R. E. Marsh, Acta Crystallogr., Sect. B, 1969, 25, 5 CrossRef CAS; (b) F. H. Herbstein and R. E. Marsh, Acta Crystallogr., Sect. B, 1977, 33, 2358 CrossRef.
  15. See, for example, F. H. Herbstein and M. Kapon, Acta Crystallogr., Sect. B, 1978, 34, 1608 Search PubMed; F. H. Herbstein, M. Kapon and G. M. Reisner, J. Inclusion Phenom., 1987, 5, 211 CrossRef; F. H. Herbstein, M. Kapon, I. Maor and G. M. Reisner, Acta Crystallogr., Sect. B, 1981, 37, 136 CrossRef CAS.
  16. See, for example, F. H. Herbstein and M. Kapon, Acta Crystallogr., Sect. B, 1979, 35, 1614 Search PubMed; H. Oshio and H. Ichida, J. Phys. Chem., 1995, 99, 3294 CrossRef; O. M. Yaghi, L. Guangming and L. Hailian, Nature (London), 1995, 14, 378 CrossRef CAS.
  17. M. Meot-Ner (Mautner), J. Am. Chem. Soc., 1984, 106, 1257 CrossRef; M. Meot-Ner (Mautner) and L. W. Sieck, J. Am. Chem. Soc., 1986, 108, 7525 CrossRef.
  18. D. Braga, F. Grepioni, K. Biradha, V. R. Pedireddi and G. R. Desiraju, J. Am. Chem. Soc., 1995, 117, 3156 CrossRef CAS.
  19. C. B. Aakeroy and M. Nieuwenhuyzen, J. Am. Chem. Soc., 1994, 116, 10 983 CrossRef; J. Mol. Struct., 1996, 374, 223 Search PubMed.
  20. M. W. Hosseini, R. Ruppert, P. Schaeffer, A. De Cian, N. Kyritsakas and J. Fisher, J. Chem. Soc., Chem. Commun., 1994, 2135 RSC; O. Félix, M. W. Hosseini, A. De Cian and J. Fisher, Tetrahedron Lett., 1997, 38, 1933 CrossRef CAS and refs. therein G. Brand, M. W. Hosseini, R. Ruppert, A. De Cian, J. Fisher and N. Kyritsakas, New J. Chem., 1995, 19, 9 Search PubMed; O. Félix, M. W. Hosseini, A. De Cian and J. Fisher, Angew. Chem., Int. Ed. Engl., 1997, 36, 102 Search PubMed.
  21. V. A. Russell, C. C. Evans, W. Li and M. D. Ward, Science, 1997, 276, 575 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.